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1 Getting Started

This vignette provides a demonstration of a few important BioCro functions and some R basics. We will be
using functions from the BioCro and lattice packages, so we must make sure they are both loaded:

library(BioCro)

library(lattice)

If these packages are not installed on your machine, installation instructions for BioCro are available at
its GitHub repository web page, while the lattice package can be installed by typing the following in R:

install.packages('lattice')

While reading this guide, please keep in mind that R has a built-in help system that can provide docu-
mentation for any command, including those in the BioCro library. This help system can be accessed using
the ? command. For example:

# Access documentation for a BioCro function when the package is loaded

?run_biocro

# Access documentation for a BioCro data set, even if the package is not loaded

?BioCro::soybean

# Access documentation for a base R function

?list

# Access documentation for an R operator, which must be quoted using ', `, or "

?`<-`

New R users may also �nd it useful to consult the resources available in Section 7.2.

2 Running a BioCro Simulation

BioCro's main purpose is to allow a user to easily simulate the growth of a crop throughout a growing season.
To demonstrate this ability, we will run BioCro's soybean growth model using weather data corresponding
to the 2002 growing season in Champaign, Illinois. In this section, we discuss the R functions and input
arguments required to accomplish this goal. Along the way, we will introduce the most important R data
types for BioCro analysis: lists, data frames, and vectors. The discussion of these objects presented in this
vignette is intentionally basic and rudimentary; many guides are available online that discuss them in more
detail (Section 7.2).

2.1 Calling run_biocro

To run a BioCro simulation, we use the run_biocro function, which builds a set of model equations from its
input arguments and solves the model over the speci�ed time period. The BioCro package includes pre-set
collections of values that can be passed as input arguments to run_biocro when simulating soybean growth:

soybean_result <- run_biocro(

soybean$initial_values,

soybean$parameters,

soybean_weather$'2002',

soybean$direct_modules,

soybean$differential_modules,

soybean$ode_solver

)
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(See Section 7.1.1 for an alternate way to write this command.)
This command begins to illustrate the power of BioCro: with one function call, we are able to run a

complex crop growth simulation including a mechanistic model for C3 photosynthesis coupled to equations
for leaf energy balance and stomatal opening, photothermal soybean development, soil water dynamics, and
many other important processes. All of this was accomplished using the standard BioCro module library,
and we didn't need to write a single equation.

The following subsections discuss the input arguments to run_biocro, explaining how they work together
to de�ne and run a simulation, how to specify them in R, and how to use pre-set options available in the
BioCro package. In each case, we will also show how they relate to an important element of the BioCro
philosophy: that models are sets of equations. Speci�cally, we will emphasize that each input argument to
run_biocro speci�es equations that help to determine the time evolution (or lack thereof) for one or more
members xi of the model's state x, which is taken to comprise all quantities involved in the model (Equations
3, 4, 5, 6, and 7).

Although this might seem like a merely philosophical point, it has considerable practical implications
regarding the design and use of the BioCro framework. In particular, it enables full modularity�which can
be viewed as simply swapping one equation for another�allowing for great �exibility in model design and
analysis.

2.2 Choosing the modules

Background

To run a BioCro simulation, the user must specify collections of modules to use. A module represents one or
more related equations that model some aspect of plant biology. Each module M has input quantities xMin

and output quantities xMout
; when a module is run, its outputs are determined from its inputs according

to its equations. Modules come in two types: di�erential modules calculate terms of the time derivatives
of their output quantities, while direct modules directly calculate the values of their output quantities. In
other words, a direct module de�nes a function fM that calculates its outputs from its inputs according to
the following equation:

xMout
= fM (xMin

, t) . (1)

Likewise, a di�erential module de�nes a function gM that calculates derivatives of its outputs from its inputs
according to the following equation:

dxMout

dt
= gM (xMin

, t) . (2)

During a simulation, modules are able to form chains where the output of one module is used as the
input to another. For example, a direct module could calculate partitioning coe�cients based on a plant's
physiological age and a di�erential module could subseqently use those parititioning coe�cients to distribute
assimilated carbon to di�erent organs. In order for these module chains to behave as expected, the collection
of modules must be run in a particular order to ensure that the values of each module's inputs are known
before it attempts to calculate its outputs. When a simulation is run, BioCro automatically determines a
suitable ordering for the modules (Section 2.6). Any module inputs that are not calculated by other modules
must be provided as parameters (Section 2.3) or drivers (Section 2.4).

Since direct modules calculate instantaneous values of quantities, at most one direct module can have
a particular quantity as an output. For example, multiple direct modules are able to calculate the canopy
assimilation rate, but only one such module can be used in a given simulation. Before running a simulation,
BioCro checks for any overlap between the outputs of the direct modules (Section 2.6). On the other hand,
since di�erential modules calculate terms of a derivative, multiple di�erential modules can have a particular
quantity as an output; in this case, the module outputs will be added together to determine the overall
derivative. For example, one di�erential module may calculate a positive rate of leaf carbon gain due to
assimilation while another calculates a negative rate of leaf carbon loss due to senescence; both may be used
in a given simulation.
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Within the context of a simulation, the inputs and outputs of all modules are part of the state x. In
this situation, we can say that the collection of direct modules de�nes a collection of functions where each
function fi calculates the value of an individual state element xi from a subset of the state xi according to
the following equation:

xi = fi
(
xi, t

)
. (3)

Each fi is de�ned by one module, and one module may de�ne multiple fi. Likewise, we can also say that
the collection of di�erential modules de�nes a collection of functions where each function gi calculates the
derivative of an individual state element xi from a subset of the state xi according to the following equation:

dxi

dt
= gi

(
xi, t

)
. (4)

Each gi can be de�ned by more than one module, and one module may de�ne terms of multiple gi.

R implemetation

BioCro modules are organized into groups called module libraries (Section 5); each library has a name, and
each module within it has a local name, allowing individual modules to be identi�ed by specially-formatted
strings of the type library_name:local_module_name, where the library name (library_name) and local
module name (local_module_name) are separated by a colon (:); we refer to these strings as fully-quali�ed
module names. Collections of modules (which may come from multiple libraries) can be speci�ed in R using
the c command, which creates an R vector from its input arguments. For example, if we wish to use a module
called Module_1 from a library called libA and a module called Module_2 from a library called libB, we
could write the following:

modules <- c(

'libA:Module_1',

'libB:Module_2'

)

Elements of a vector can be accessed using an integer index; for example, we can retrieve or modify the
�rst element of modules as in the following example, where we replace Module_1 with Module_3 from the
same library:

print(modules[1])

## [1] "libA:Module_1"

modules[1] <- 'libA:Module_3'

print(modules)

## [1] "libA:Module_3" "libB:Module_2"

Sometimes it may be convenient to specify a module's role within the collection. In this case, it is helpful
to provide names for one or more of the modules in a collection. Here we demonstrate how to accomplish
this with an R list :

differential_modules <- list(

'BioCro:partitioning_growth',

thermal_time_module = 'BioCro:thermal_time_linear'

)

Here, thermal_time_module is the name of an element of the list differential_modules; it is not

the name of a module. Its purpose is to allow us to access that list element by a meaningful identi�er
(thermal_time_module) rather than its numbered position within the list. Now, if we want to use a di�erent
equation for calculating thermal time, we can easily switch it via a command like:
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differential_modules$thermal_time_module <- 'BioCro:thermal_time_trilinear'

Swapping one module for an alternate version can be very powerful when evaluating the di�erences
between multiple modeling strategies, and accomplishing this �plug-and-play modularity� with ease is one of
BioCro's most important abilities. For an example of how the performance of two modules can be compared
in the context of a soybean simulation, see the Quantitative Comparison Between Two Photosynthesis Models

vignette.
It may be tedious to repeatedly specify the same library name multiple times in a set of fully-quali�ed

module names. Doing so can be avoided by using the module_paste function, which automatically prepends
a library name to a vector or list of local module names, forming a set of fully-quali�ed module names. For
example, we can create the same list of di�erential module names using module_paste as follows:

differential_modules <- module_paste('BioCro', list(

'partitioning_growth',

thermal_time_module = 'thermal_time_linear'

))

Pre-set options available in the BioCro package

In Section 2.1, we supplied pre-de�ned lists of modules when calling the run_biocro function:
soybean$direct_modules and soybean$differential_modules. As discussed in that section, these mod-
ules de�ne a large set of equations that represent many important processes involved in the growth of a crop
and its interactions with its environment. The contents of these lists can be printed to the R console using
the str command, which nicely shows the structure of the object being printed:

str(soybean$differential_modules)

## List of 5

## $ senescence : chr "BioCro:senescence_logistic"

## $ : chr "BioCro:partitioning_growth"

## $ soil_profile: chr "BioCro:two_layer_soil_profile"

## $ : chr "BioCro:development_index"

## $ thermal_time: chr "BioCro:thermal_time_linear"

To learn about speci�c modules, see Section 6.2.

2.3 Choosing the parameters and initial values

Background

To run a BioCro simulation, a user must supply the values of parameters (quantities whose values are
taken to be constant during the course of a simulation) and the initial values of the di�erential quantities

(quantities whose evolution with time is determined by di�erential equations). In general, the sets of required
parameters and initial values will be determined by the modules and drivers that a user has chosen to use
(Sections 2.2 and 2.4, respectively).

Specifying the parameters and initial values can be thought of as de�ning simple equations of the form

xi = pi (5)

and

xi(t0) = xi0, (6)

where xi is an individual state element, pi is a constant parameter value and xi0 is the value of a di�erential
quantity at the start of the simulation (where t = t0).
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R implementation

Both the parameters and initial values must be speci�ed using lists of named elements. When specifying
collections of modules (Section 2.2), names are optional; for parameters and initial values, names are required
since they are used to uniquely identify each quantity. For example, if we have two parameters called
parameter_1 and parameter_2 whose values are 2.3 and 8.9, respectively, we can specify them using a list
as follows:

parameters <- list(

parameter_1 = 2.3,

parameter_2 = 8.9

)

Here the syntax of de�ning a list�where a value is assigned to a name using an equals sign�is a reminder
that parameter speci�cations can be thought of as representing simple individual equations like Equations 5
and 6.

Pre-set options available in the BioCro package

In Section 2.1, we supplied pre-de�ned lists of parameters and initial values when calling the run_biocro

function: soybean$parameters and soybean$initial_values. These lists include quantities that char-
acterize soybean physiological processes (such as vc,max), speci�cs related to �eld conditions (such as the
initial seed mass per unit ground area), and other important categories of quantities. To learn about speci�c
quantities, see Section 6.1.

2.4 Choosing the drivers

Background

To run a BioCro simulation, a user must supply the drivers, which are quantities whose values are taken
to be known beforehand at a set of discrete time points. In most BioCro simulations, the drivers represent
weather data obtained from sensors at a particular location. Within the BioCro framework, interpolation
is used to create a continuous function of time for each quantity de�ned in the drivers. In this sense, each
driver can be viewed as following an equation of the form

xi = di(t), (7)

where where xi is an individual state element and di(t) is a function determined by interpolation from the
driver's discrete values.

R implementation

The drivers must be speci�ed as a data frame, an R data structure that conceptually resembles a table. In
the case of the drivers, each column in the data frame represents one quantity, and each row represents one
time point. For example, we could de�ne a simple set of drivers that speci�es the air temperature (temp)
throughout one day at 3-hour intervals as follows:

hour <- seq(0, 23, 3)

temp <- 20 + 8 * sin((hour / 24) * pi)^2 # we use "vector arithmetic" to form `temp`

drivers <- data.frame(

hour = hour,

temp = temp

)

(Typically, BioCro drivers would not be determined from an analytic equation; here we do this for convenience
when providing an example of constructing a simple data frame.)
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The contents of a data frame can be viewed in several ways (Section 3); here we simply print to the R
terminal using the print command:

print(drivers)

## hour temp

## 1 0 20.00000

## 2 3 21.17157

## 3 6 24.00000

## 4 9 26.82843

## 5 12 28.00000

## 6 15 26.82843

## 7 18 24.00000

## 8 21 21.17157

Pre-set options available in the BioCro package

In Section 2.1, we supplied a pre-de�ned data frame of drivers when calling the run_biocro function:
soybean_weather$'2002'. Assembling drivers that represent weather data in a particular location can be a
complicated process because di�erent weather data sets or weather sensors produce di�erent outputs and use
di�erent formats, precluding a general approach to obtaining and processing weather data. For convenience,
the BioCro package includes some pre-processed weather data from Champaign, Illinois which can be used
to replicate the analysis of a few published papers and serve illustrative purposes.

2.5 Choosing the di�erential equation solver

Background

To run a BioCro simulation, a user must specify an algorithm to use for solving the set of coupled ordinary
di�erential equations (ODEs) de�ned by the other input arguments to run_biocro; in BioCro, we refer to
such an algorithm as an ode_solver. In general, numerical ODE integration methods require a function
G(xdi�erential, t) that calculates derivatives dxdi�erential/dt from values of the time and a set of quantities
xdi�erential. Along with a set of initial values and a time domain, the algorithm determines the time evolution
of xdi�erential. In BioCro, such a function G can be de�ned by taking the following steps:

1. Determine the values of the parameters using Equation 5.

2. Determine the values of the drivers using Equation 7.

3. Determine the values of the direct module outputs using Equation 3.

4. Determine the derivatives of the di�erential quantities using Equation 4.

Once the time evolution of the di�erential quantities has been determined by the ODE solver, the time
evolution of the state as a whole can be determined using steps 1-3 above. This process of de�ning G,
passing it to a solver, and then determining the entire state's time evolution is automatically handled by the
BioCro framework.

R implementation

An ODE solver is speci�ed using a list with a particular format, where the list must contain the following
named elements:

� type: The name of the algorithm.

� output_step_size: The time interval to be used in the output of run_biocro, speci�ed as a multi-
plicative factor relative to the time step used in the drivers; for example, if the drivers have an hourly
time step and the output_step_size is 0.5, the simulation result will have a half-hourly interval.
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� adaptive_rel_error_tol: A relative error tolerance to be used with adaptive step-size ODE solvers.

� adaptive_abs_error_tol: An absolute error tolerance to be used with adaptive step-size ODE solvers.

� adaptive_max_steps: The maximum number of attempts allowed when an adaptive step-size ODE
solver tries to �nd a new step size.

Pre-set options available in the BioCro package

In Section 2.1, we supplied a pre-de�ned ODE solver when calling the run_biocro function:
soybean$ode_solver. Its contents can be viewed as with any other list:

str(soybean$ode_solver)

## List of 5

## $ type : chr "boost_rkck54"

## $ output_step_size : num 1

## $ adaptive_rel_error_tol: num 1e-04

## $ adaptive_abs_error_tol: num 1e-04

## $ adaptive_max_steps : num 200

Here the boost_rkck54 ODE solver is used. This is the Boost library's implementation of an adaptive
step-size 5th order Runge-Kutta solver with 4th order Cash-Karp error estimation. This is an excellent solver
for any situation where an Euler solver is not required and when the system of equations is not sti�. For sti�
systems, the boost_rosenbrock solver, which is the Boost library's implementation of an adaptive step-size
4th order Rosenbrock solver, may be more appropriate. A full list of the available types can be obtained
using the get_all_ode_solvers() function.

2.6 Validating run_biocro input arguments

Background

Before running a simulation, it is essential to check whether the supplied modules, parameters, initial values,
and drivers are able to specify a well-de�ned system that can in principle be solved. Four conditions are
su�cient to ensure the validity of a model in this sense:

1. The input quantities of each module must be de�ned ; here, a quantity is said to be de�ned if it is a
parameter (Section 2.3), a driver (Section 2.4), or if it is the output of a module (Section 2.2).

2. No quantity can be de�ned more than once. For example, a quantity cannot be de�ned as a parameter
and as the output of a direct module; similarly, a quantity cannot be de�ned by multiple direct modules.

3. Each di�erential module output must have a corresponding initial value (Section 2.3).

4. There must exist an ordering of the modules such that a module requiring a particular direct module
output occurs later than the module providing that output; in other words, there must be no circular
dependencies among the direct modules.

R implementation

The run_biocro function checks the supplied arguments to ensure that these four conditions are satis�ed
and provides helpful feedback to the user if a problem is detected. For example, if one or more of the
di�erential quantities is missing an initial value, or if a parameter is missing, an error will occur:

8



soybean_result <- run_biocro(

within(soybean$initial_values, rm(Leaf)), # remove the initial `Leaf` value

within(soybean$parameters, rm(leaf_reflectance)), # remove `leaf_reflectance`

soybean_weather$'2002',

soybean$direct_modules,

soybean$differential_modules,

soybean$ode_solver

)

## Error in as.data.frame(.Call(R_run_biocro, initial_values, parameters, : Caught exception

in R_run_biocro: Thrown by dynamical_system::dynamical_system: the supplied inputs cannot

form a valid dynamical system

##

##

## [pass] No quantities were defined multiple times in the inputs

##

## [fail] The following module inputs were not defined:

## Leaf from the 'parameter_calculator' module

## leaf_reflectance from the 'ten_layer_canopy_properties' module

## Leaf from the 'senescence_logistic' module

## Leaf from the 'partitioning_growth' module

##

## [fail] The following differential module outputs were not part of the initial values:

## Leaf from the 'senescence_logistic' module

## Leaf from the 'partitioning_growth' module

##

## [pass] There are no cyclic dependencies among the direct modules.

Additionally, error messages will be generated if the name of a module or the type of the ode_solver cannot
be found in the corresponding libraries:

soybean_result <- run_biocro(

soybean$initial_values,

soybean$parameters,

soybean_weather$'2002',

append(soybean$direct_modules, 'BioCro:nonexistent_module'), # add a nonexistent module

soybean$differential_modules,

soybean$ode_solver

)

## Error in stats::setNames(.Call(R_module_creators, module_names), names(module_names)): Caught

exception in R_module_creators: "nonexistent_module" was given as a module name, but no module

with that name could be found.

If the modules are not provided in a suitable order for evaluation, they will be automatically reordered.
There is also a related function (validate_dynamical_system_inputs) which takes the same input

arguments as run_biocro (except ode_solver) and checks them for validity without attempting to run the
simulation. It returns a boolean indicating validity and prints additional information to the R terminal,
such as a list of parameters that are not used by any modules (since such parameters could in principle be
removed without a�ecting the simulation) and a suitable ordering for the direct modules (if reordering is
required).

# This code is not evaluated here since it produces a large amount of text

valid <- validate_dynamical_system_inputs(
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soybean$initial_values,

soybean$parameters,

soybean_weather$'2002',

rev(soybean$direct_modules), # Reverse the order of the direct modules

soybean$differential_modules

)

3 Viewing and saving the results of a BioCro simulation

The output from the call to run_biocro in Section 2.1 is returned as a data frame, an R data structure
that was introduced in Section 2.4. In this case, each column represents one of the quantities whose value
is determined during the simulation, and each row represents a time point. By default, all quantities except
the parameters are included in the output of run_biocro, so this data frame also includes the drivers.

Since the run_biocro function returns its result in a commonly used R structure, there are many options
available for interacting with the data. In the following sections, we demonstrate how to access numerical
values from the data frame, how to create plots from its columns, and how to save or export the data frame
for future analysis.

3.1 Accessing numerical values

Several options exist for viewing the numerical contents of a data frame. We have already mentioned the
str and print commands in Section 2.4; here we provide a few additional methods.

We can view the results formatted as a table in a new window in the R environment:

View(soybean_result)

We can store the column names in a vector for later use or viewing:

soybean_model_outputs <- colnames(soybean_result)

The individual columns can be accessed the same way as the named list elements discussed in Section
2.2. For example, if we want to see the doy column, which represents the day of the year (DOY), we could
type the following:

str(soybean_result$doy)

## num [1:3288] 152 152 152 152 152 152 152 152 152 152 ...

It's also possible to view a subset of the data frame limited to just some columns:

str(soybean_result[c('doy', 'hour', 'Leaf')])

## 'data.frame': 3288 obs. of 3 variables:

## $ doy : num 152 152 152 152 152 152 152 152 152 152 ...

## $ hour: num 0 1 2 3 4 ...

## $ Leaf: num 0.0631 0.0631 0.0631 0.0631 0.0631 ...

A similar technique can be used to limit which rows are displayed:

str(soybean_result[round(soybean_result$doy) == 250, c('doy', 'hour', 'Leaf')])

## 'data.frame': 24 obs. of 3 variables:

## $ doy : num 250 250 250 250 250 250 250 250 250 250 ...

## $ hour: num 0 1 2 3 4 ...

## $ Leaf: num 0.901 0.898 0.895 0.892 0.889 ...
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3.2 Plotting the results of a simulation

Viewing the numeric results directly from a data frame can be useful at times, but it's often more useful
to plot one or more columns from the result against an independent variable such as time. We can do this
with the xyplot function from the lattice package, which must be loaded into the R workspace (Section
1). This function produces an R trellis object which can be viewed with the print function.

soybean_plot_v1 <- xyplot(

soybean_result$Leaf ~ soybean_result$time

)

print(soybean_plot_v1)

soybean_result$time
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0.5
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150 200 250

We can avoid repeating the data frame name each time we specify a column by using xyplot's data
argument. Notice the e�ect this has on the axis labels:

soybean_plot_v2 <- xyplot(

Leaf ~ time,

data = soybean_result

)

print(soybean_plot_v2)
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Here is a more advanced example where we plot multiple organ masses on the y axis, provide axis labels,
specify axis ranges, add a legend, etc. Notice that we use two-element vectors to specify the axis limits and
a list to specify the legend properties. See Section 6.1 for a discussion about the units used in this �gure.

soybean_plot_v3 = xyplot(

Stem + Leaf + Root ~ time, # Specify multiple data series using `+`

data = soybean_result, # Plot data from `soybean_result`

type = 'b', # Plot using both points and a line (use

# 'l' for just a line or 'p' for points)

pch = 20, # Use a small solid circle for the points

ylab = 'Biomass (Mg / ha)', # Y label

xlab = 'Day of year', # X label

auto.key = list(space = 'right'), # Add a legend on the right side

grid = TRUE, # Add horizontal and vertical lines

main = 'Soybean biomass calculated in 2002', # Add a main title

xlim = c(204, 206), # Specify the X axis limits

ylim = c(0, 3) # Specify the Y axis limits

)

print(soybean_plot_v3)
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3.3 Exporting or saving the results of a simulation

For any serious analysis, it is critical to store either the results themselves or the code that produced them.
R o�ers clear routes for both options:

� R code can be saved to a �le with a .R extension; this forms a script that can be run later using
R's source command. Saving code that you've been entering directly into the R terminal as a script
ensures that you can repeat or modify a previous analysis.

� Any R objects can be saved as R data �les using the save function; for example, the soybean_result
data frame calculated in Section 2.1 can be saved to a �le with the following command: save(soybean_result,
file=file.choose()). Here the �lename is chosen interactively using the file.choose function, and
it should have a .rda, .RData, or .rdata extension.

� R data frames can also be saved in plain-text format as comma-separated value (CSV) �les using R's
write.csv function: for example, write.csv(soybean_result, file=file.choose(), row.names=FALSE).
Here the �lename should have a .csv extension. Now the data can be opened with many other pieces
of software for analysis or plotting.

4 Visualizing module behavior by calculating a response curve

To understand how a module works, it can be helpful to visualize how one of its output quantities depends on
one of its input quantities across a reasonable range�a plot typically called a response curve. As an example,
here we will calculate the response of the soybean net CO2 assimilation rate (An) to the absorbed photosyn-
thetically active photon �ux density (PPFD; Qabs) according to the Farquhar-von-Caemmerer-Berry model
for C3 photosynthesis, which is available in the standard BioCro module library as the c3_assimilation

module. (This module also uses the Ball-Berry model for stomatal conductance, iteratively solving for
consistent solutions to the photosynthesis and conductance equations.)

The �rst step towards calculating a response curve is to check the module's inputs and outputs, which
can be done using the module_info function, as discussed in Section 6.2:

module_info('BioCro:c3_assimilation')

##

##
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## Module name:

## c3_assimilation

##

## Module input quantities:

## Qabs

## Tleaf

## temp

## rh

## vmax1

## jmax

## tpu_rate_max

## Rd

## b0

## b1

## Gs_min

## Catm

## atmospheric_pressure

## O2

## theta

## StomataWS

## electrons_per_carboxylation

## electrons_per_oxygenation

## beta_PSII

## gbw

##

## Module output quantities:

## Assim

## Gs

## Cs

## RHs

## Ci

## GrossAssim

## Assim_conductance

## Rp

## iterations

##

## Module type (differential or direct):

## direct

##

## Requires a fixed step size Euler ode_solver:

## no

Here, the Qabs input represents the absorbed PPFD Qabs, while the Assim output represents the net
assimilation rate An. So we will be varying Qabs while keeping the other input quantities �xed. The values
of several other input quantities are speci�ed in soybean$parameters. For others, we will need to make a
choice based on reasonable �eld conditions.

To run the module, we will need the evaluate_module function, which requires a fully-quali�ed module
name and a named list of input quantities. It attempts to run the module, returning its outputs as a named
list. If any of the module's inputs are not provided, a helpful error message will be returned. So we can try
passing the soybean$parameters list as an input to the c3_assimilation module; this will help identify
the remaining inputs that we need to de�ne.

outputs <- evaluate_module('BioCro:c3_assimilation', soybean$parameters)

## Error in send_error_messages(error_messages): The `BioCro:c3_assimilation` module requires
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`Qabs` as an input quantity

## The `BioCro:c3_assimilation` module requires `StomataWS` as an input quantity

## The `BioCro:c3_assimilation` module requires `Tleaf` as an input quantity

## The `BioCro:c3_assimilation` module requires `gbw` as an input quantity

## The `BioCro:c3_assimilation` module requires `rh` as an input quantity

## The `BioCro:c3_assimilation` module requires `temp` as an input quantity

Here, as expected, an error occurs because several input quantities are not de�ned. We can choose values
for these and add them to the parameter list:

outputs <- evaluate_module(

'BioCro:c3_assimilation',

within(soybean$parameters, {

rh = 0.7 # dimensionless

Qabs = 1800 # micromol / m^2 / s

Tleaf = 27 # degrees C

gbw = 1.2 # mol / m^2 / s

StomataWS = 1 # dimensionless; 1 indicates no water stress

temp = 25 # degrees C

})

)

Choosing reasonable input parameters is sometimes a di�cult process, but insight can often be gained by
examining weather data, crop parameter lists, the outputs of a BioCro simulation, or published literature.
Critical information about particular quantities, such as their meaning and units, can be obtained using the
strategies in Section 6.

Since we now have a complete set of inputs, we are ready to calculate a response curve by varying
Q and recording corresponding values of An. One way to accomplish this goal would be to repeatedly
call evaluate_module within a for loop or using a function like sapply. However, since calculating a
response curve is a common operation, the BioCro package includes a convenience function for doing so:
module_response_curve. This function requires a fully-quali�ed module name, a list of �xed input quan-
tities, and a data frame specifying the values of any input quantities that should vary. It returns a data
frame with each of the module's inputs and outputs as columns, where each row represents a di�erent set of
inputs. This is a convenient format for plotting or saving the results, as discussed in Section 3.

For this example, a response curve can be calculated and viewed as follows, where we generate a plot
caption from the information stored in the response curve data frame:

rc <- module_response_curve(

'BioCro:c3_assimilation',

within(soybean$parameters, {

rh = 0.7

Tleaf = 27

gbw = 1.2

StomataWS = 1

temp = 25

}),

data.frame(Qabs = seq(from = 0, to = 2000, length.out = 501))

)

caption <- paste0(

'Soybean response curve calculated with\nTleaf = ', unique(rc$Tleaf),

' degrees C and RH = ', unique(rc$rh), '\nusing the `',

unique(rc$module_name), '` module'

)
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xyplot(

Assim ~ Qabs,

data = rc,

type = 'l',

xlab = 'Absorbed PPFD (micromol / m^2 / s)',

ylab = 'Net CO2 assimilation rate\n(micromol / m^2 / s)',

main = caption,

grid = TRUE

)

Soybean response curve calculated with
Tleaf = 27 degrees C and RH = 0.7

using the ‘BioCro:c3_assimilation‘ module
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(Note that since the data frame returned by module_response_curve includes all of the module's outputs,
we could also use rc to create plots showing how the stomatal conductance for water (Gs) or the intercellular
CO2 concentration (Ci) respond to the incident PPFD.)

From this �gure, we can learn a few interesting things about the response of the carbon assimilation
rate to the amount of incoming light. First, when the light is low, the carbon consumed by respiratory
processes exceeds the carbon gained through photosynthetic assimilation, leading to a negative value of the
net assimilation rate. An important consequence of this is that although plants take in CO2 during the day,
they exhale CO2 at night. As light intensity increases, the initial response is linear, although it begins to
plateau at higher light intensities; in other words, the additional light energy does not cause a large increase
in assimilation when the light intensity is already high.

Although this information is encoded in the equations used to calculate the net assimilation rate, these
insights are di�cult to obtain by merely viewing the equations, and only become apparent when calculating
a response curve using realistic values for environmental conditions and photosynthetic parameters. This
example illustrates a very basic response curve calculation; a more advanced analysis could include multiple
curves calculated for di�erent values of air temperature or relative humidity. Thus, the ability to quickly and
easily calculate response curves from individual model components is another key ability of BioCro, which
complements the bene�ts of modularity that were discussed in Sections 2.1 and 2.2.

A response curve can also be the �rst step towards a full sensitivity analysis, where numerical derivatives
of an output quantity with respect to an input quantity can be calculated. See the Quantitative Comparison

Between Two Photosynthesis Models vignette for a more detailed analysis including some of these ideas.

5 Module libraries

Currently, there is only one module library available, and it comes packaged as part of the BioCro R
package. This �standard library� is named BioCro, so all fully-quali�ed module names currently take the

16



form BioCro:module_name. Later, the BioCro R package will only contain functions related to the core
framework (such as run_biocro), and each module library (including the standard library) will exist as a
separate R package, where the name of the module library is set to be the name of its R package. Module
libraries will allow researchers to develop their own modules privately and facilitate the creation of modules
that can be used for other purposes besides crop growth simulations. Stay tuned for new developments!

6 Getting basic information about quantities and modules

6.1 Quantities

In the �nal plot in Section 3.2, we speci�ed that the units of the Stem, Leaf, and Root quantities are each
Mg / ha (megagrams per hectare). You may be wondering: where did this information come from?

The BioCro development team is currently working on an automatically-generated HTML document that
describes the essential properties of each quantity: its units, modules that use it as an input, and modules
that calculate it as an output. However, even though this document is not yet available, there is another
route for learning about a particular quantity.

Unfortunately, determining the units is not very easy since the units are only documented within the
source code for individual modules. So, to �nd out the units for Leaf, we need to �rst locate a module which
uses Leaf as an input or an output and then view its source code.

To do this, we begin by using the get_all_quantities function, which is part of the BioCro framework.
This function requires the name of a module library as its input argument, and it returns a data frame with
three columns: quantity_name, quantity_type, and module_name. Each row in this data frame represents
an input or output of one of the modules from the speci�ed module library.

Once we get information about all the BioCro quantities, we can take a subset of them: we just want
the rows where the quantity name is Leaf. This will give us some possible modules to choose from. In this
example, we use the cat command with sep = '\n' to ensure that each vector element is printed on its
own line:

all_quantities <- get_all_quantities('BioCro')

leaf_quantity_subset <- all_quantities[all_quantities$quantity_name == 'Leaf', ]

leaf_modules <- unique(leaf_quantity_subset$module_name)

cat(leaf_modules, sep = '\n')

## BioCro:biomass_leaf_n_limitation

## BioCro:example_model_mass_gain

## BioCro:example_model_partitioning

## BioCro:parameter_calculator

## BioCro:partitioning_growth

## BioCro:senescence_logistic

## BioCro:thermal_time_and_frost_senescence

## BioCro:thermal_time_senescence

## BioCro:total_biomass

Now we can see there are several modules that have Leaf as an input or output. Let's choose one of
them: the total_biomass module. We can �nd its source code in src/module_library/total_biomass.h.
(See Section 6.3 for more information about how to access the source code.) This is a C++ header �le that
de�nes the module. Looking through the code, we can �nd the units for Leaf speci�ed in a comment (Listing
1).

Listing 1: Section of code from src/module_library/total_biomass.h.

string_vector total_biomass :: get_inputs ()

{

return {

"Leaf", // Mg / ha
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"Stem", // Mg / ha

"Root", // Mg / ha

"Rhizome", // Mg / ha

"Grain" // Mg / ha

};

}

6.2 Modules

Basic information about a module�its input quantities, output quantities, and type�can be obtained from
within R using the module_info function, which prints module info to the R terminal and also (optionally)
returns it as a list. Printing to the terminal can be disabled by setting the verbose argument to FALSE. For
an example of printing module info to the terminal, see Section 4; here we demonstrate how to silently store
the module info in a list:

info <- module_info('BioCro:total_biomass', verbose = FALSE)

str(info)

## List of 6

## $ module_name : chr "total_biomass"

## $ inputs : chr [1:6] "Grain" "Leaf" "Rhizome" "Root" ...

## $ outputs : chr "total_biomass"

## $ type : chr "direct"

## $ euler_requirement : chr "does not require a fixed-step Euler ode_solver"

## $ creation_error_message: chr "none"

Notice that BioCro modules can be designated as requiring a �xed-step Euler solver; this is to accom-
modate discrete dynamical systems, which can be represented in BioCro provided that the ODE solver only
takes steps of a speci�ed size. An error will occur if run_biocro is called with a non-Euler ODE solver when
one or more of its modules requires an Euler ODE solver.

A list of all modules available within a particular module library can be obtained with the get_all_modules
function, and detailed information about an individual module can be obtained by viewing its source code
or the associated Doxygen documentation; see Section 6.3.

6.3 Accessing the source code

There are several options for viewing BioCro's source code:

� BioCro is available as a public GitHub repository, so all of its source code can be viewed via a web
browser at https://github.com/biocro/biocro.

� The source code can also be downloaded from the GitHub repository and viewed locally via a user's
preferred methods.

� Doxygen documentation of all the code or various subsets of the code can be viewed at the BioCro
documentation website https://biocro.github.io.

Many users will only be interested in the source code for the modules, which is located in the src/module_library
directory. Most of the time, the source code for a module called module_name will be contained in a �le
called src/module_library/module_name.h or src/module_library/module_name.cpp. However, there
are a few cases where the �le name does not match the module name. In this case, the code can be quickly
located by searching for the module's name within the directory using grep or another search method;
alternatively, each module is present as a class within the Doxygen documentation (see Section 6.3.1).
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6.3.1 Viewing module code in the Doxygen documentation

Looking directly at the code is the most complete way to learn about a module, but it might not always
be the best way, since the module's equations are surrounded by boilerplate code required by the C++
framework. As an alternative to reading the code itself, most modules have detailed descriptions written
as Doxygen-style comments that include some background information, the equations used by the module,
and references to published literature that describe the equations and concepts used in the module. Nicely-
formatted versions of these description comments are available at the BioCro documentation website, as
mentioned above.

For example, part of the Doxygen-style comment for the thermal_time_linear module is shown in
Listing 2. In the nicely-formatted version, this is rendered as shown in Figure 1.

Listing 2: Snippet of Doxygen-style comment from the thermal_time_linear module.

/**

* This module implements the most basic model , which is discussed in many places ,

* e.g. section 2.7 of Campbell & Norman (1998). In this model , `DR` is determined

* from the air temperature `T` according to:

*

* | DR | T range |

* | :----------: | :-----------: |

* | `0` | `T <= T_base ` |

* | `T - T_base ` | `T_base < T` |

*

* Thermal time has units of `degrees C * day ` and the development rate , as written

* here , has units of `degrees C * day / day = degrees C`. This is a common formulation ,

* reflecting the fact that average daily temperatures are often used to calculate the

* increase in thermal time during an entire day.

*

* This model is based on the observation that once the air temperature exceeds a

* threshold , development begins to proceed linearly. However , it is known that this

* trend cannot continue indefinitely and this model tends to overestimate development

* at high temperatures.

*/

Figure 1: Nicely-formatted version of the comment in Listing 2, as rendered by Doxygen.
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The Doxygen documentation also includes the code itself in addition to the nicely-formatted comments.
Besides the nice formatting, there is another advantage to viewing the Doxygen documentation: linking

between �les and classes. There are links to the source code from the module class description page even
when the �le name doesn't match the module class name. For example, the ten_layer_rue_canopy class
page includes a link to the source code �le multilayer_rue_canopy.h where it is de�ned.

7 Tips and tricks

7.1 Writing more e�cient R code

7.1.1 Reducing duplication with the with command

In Section 2 and several other places in this document, elements of pre-de�ned crop model de�nition lists
like soybean were passed to BioCro functions like run_biocro. These commands often involve repeating the
crop model name multiple times, such as when the soybean_result data frame was calculated in Section
2.1. In that command, soybean$ appears �ve times.

There is an alternative way to formulate these commands where the R function with can be used to
reduce the duplicated typing. For example, the soybean simulation in Section 2.1 can be run as follows:

soybean_result <- with(soybean, {run_biocro(

initial_values,

parameters,

soybean_weather$'2002',

direct_modules,

differential_modules,

ode_solver

)})

Besides shortening the code, using with also makes it easy to modify a command to simulate the growth
of another crop. Such a switch may only require one change to the command, where the single instance of
the name of a crop is replaced by another. (Additional changes may be required if the drivers need to be
di�erent for the new crop.) For more examples, see the help page for crop_model_definitions by typing
?crop_model_definitions in R.

7.1.2 Modifying lists on-the-�y with within and append

Sometimes it may be useful to make a small change to one of the pre-set model de�nition components; for
example, the value of a parameter might need to be changed, or an additional module may be required. In
these situations, within and append can be very handy.

The within command allows us to modify the named elements of a list or vector, returning a new one.
For example:

# Create a small list

original_list <- list(a = 1, b = 2, c = 3)

# Create a new list from the original one by removing the `a` element and

# changing the value of the `c` element

new_list <- within(original_list, {

rm(a)

c = 4

})

# We don't need to actually store the new list; instead we can pass it directly

# to another function. Here we perform the same operations (but separate them
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# with `;` instead of writing them on separate lines) and pass the result

# directly to `str` without storing it as a named object.

str(within(original_list, {rm(a); c = 4}))

## List of 2

## $ b: num 2

## $ c: num 4

The append command allows us to add an unnamed element to a list or vector, returning a new one. For
example:

str(append(original_list, 5))

## List of 4

## $ a: num 1

## $ b: num 2

## $ c: num 3

## $ : num 5

Both of these commands are used throughout this document; for examples, see Section 2.6.

7.2 Additional R commands and resources

There are a few R commands that may be useful but weren't speci�cally mentioned elsewhere in this guide:

� At any time, it's possible to see all the objects that have been created during an R session by using
the ls command: ls().

� If you want to clear out your session, you can delete all the objects with the rm command as follows:
rm(list=ls()).

� It is possible to check a variable's type using the class command, for example: class(c('doy',

'hour', 'Leaf')) will return character, meaning that c('doy', 'hour', 'Leaf') produces a char-
acter vector. On the other hand, class(soybean$parameters) will return list.

New users might �nd it useful to consult online guides to R, rather than relying R's help system. The
following topics would be particularly helpful to anyone using BioCro to run simulations or investigate
module behavior:

� Data structures: This topic refers to basic object types like lists, vectors, and data frames. We
recommend https://adv-r.hadley.nz/vectors-chap.html.

� Subsetting: This topic refers to selecting subsets of R data frames and matrices. We recom-
mend https://www.statmethods.net/management/subset.html and https://adv-r.hadley.nz/

subsetting.html.

� Vector arithmetic: This topic refers to performing arithmetic operations on each member of one vec-
tor, forming a new vector. We recommend https://pubs.wsb.wisc.edu/academics/analytics-using-r/
vector-math.html and https://www.r-tutor.com/r-introduction/vector/vector-arithmetics.

� Apply-type functions: This topic refers to several options for applying a function to each member
of a vector or list. We recommend https://www.guru99.com/r-apply-sapply-tapply.html.

� Lattice graphics: This topic refers to generating plots using the lattice package, which includes
many other plotting tools besides xyplot. We recommend https://www.statmethods.net/advgraphs/
trellis.html for an overview and https://homerhanumat.github.io/tigerstats/xyplot.html for
xyplot.
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� Scripts: The R help �le for the source command (available by typing ?source) has a great explanation
for how the command works and how it di�ers from entering code directly into the console. Online
guides are available with advice about best practices for writing R scripts, such as this one: https:

//swcarpentry.github.io/r-novice-inflammation/06-best-practices-R/.

8 Final remarks

So now we've gone through two important examples: running a full simulation for a crop and calculating
response curves for a module using di�erent parameter values. We've also demonstrated how the results can
be visualized and and saved. Along the way, we also discussed a few important data types in R.

It's important to note that the techniques shown here can be extended to other crops and modules. For
an in-depth example, see the Quantitative Comparison Between Two Photosynthesis Models vignette.

To test your understanding, you could try to complete the following tasks:

� Run the soybean simulation a few times with several di�erent values of a key parameter (such as vmax1,
which represents the maximum rate of carboxylation vc,max) and compare plots of the time evolution
of the Grain quantity (representing the pod mass per unit area) in each of the scenarios. (See Figure
2 for a possible solution.)

� Calculate a temperature response curve for soybean assimilation, in analogy to the light reponse curve
we calculated in Section 4. (See Figure 3 for a possible solution.)

Impact of vcmax on soybean pod biomass
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Figure 2: Soybean pod biomass throughout 2002 simulated with di�erent values of vc,max.

Good luck, and have fun exploring plant growth models using

BioCro!
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Soybean temperature response curve calculated with
2000 micromol / m^2 / s PPFD and 70% relative humidity
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Figure 3: Response of soybean net assimilation to leaf temperature.
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