An Introduction to BioCro for Those Who Want to Add Models

BioCro Development Team

April 30, 2024

This document was generated from the version of BioCro specified as follows:

Commit Hash: 31a4145
Date: Tue, 30 Apr 2024 11:21:18 -0500
Branch:

Contents
1 Disclaimer

2 Plant growth as a system of differential equations

2.1 Overview
2.2 Mathematical summary e e e
221 Model inputs
222 Model equations
2.3 Relating the mathematics to the program code
2.3.1 Function inputso
2.3.2 Function output
233 Anexample . ..

Modifying the BioCro code

3.1 Organization of the source files

3.2 Adding new models L
3.2.1 Example: Steps for creating a direct module.
3.2.2 Example: Steps for creating a differential module., ...
3.2.3 Generating the Doxygen documentation

3.3 Writing tests for new models L e
3.3.1 Writing unit tests for a direct module
3.3.2 Writing unit tests for a differential module Lo
3.3.3 Runningthetests

N N oo

(=<]

A Writing unit tests using Gro _solver 21

A.1 Writing a unit test for a direct module using Gro_solvero 21
A.2 Writing unit tests for a differential module using Gro_solver 23
B Code listings 24
B.1 Full listing of solar-zenith-angle-in-degrees module 24
B.2 Full listing of heating-degree-days module 0. 26
B.3 Full listing of the unit-test file for solar-zenith-angle-in-degrees 27
B.4 Full listing of the unit-test file for heating-degree-days 27
B.5 Full listing of the unit-test file for solar-zenith-angle-in-degrees—Gro _solver version 28
B.6 Full listing of the unit-test file for heating-degree-days—Gro_solver version 29

1 Disclaimer

This document uses some outdated terminology and needs to be updated to reflect some of the recent changes
to BioCro.

2 Plant growth as a system of differential equations

2.1

Overview

BioCro is used to calculate aspects of plant growth, such as the change in the mass of a plant, given aspects
of a plant and its environment that are already known. For example, one can calculate leaf and stem mass over
thermal time given measures of the climate (Figure 1).

Leaf *
Stem =

Mass(Mgfha)

L L L L
0 1000 2000 00 4000

Thermal time (*C d)

Figure 1: Mass over time of willow.

BioCro is designed to reflect differential equation models. In this section, we present some of the terminology
and notation we will use to describe such models. Readers already familiar with such models may want to skim

though

We'

this section and then move on to section 2.2.

I call the set of all of the variables in the model (mass, temperature, wind speed, etc.) the state. More

precisely, a state is described by the set of values assumed by these variables at some particular moment. \We
want to calculate a sequence of states—a series of snapshots of the system being modelled as it evolves over
some period of time. We'll denote the system comprising these variables by X and the state of that system at

some specific time ¢t = ¢; by X;,. (Here, t; denotes the i’th instant of time (counting from 0) in some sequence
a=ty <ty <ty<---<t,=>of times, where [a,b] is the time interval of interest.)

Some parts of the state are taken as known for the entire period, and we’ll denote this component of the
system as X (K for known) and denote the known portion of the state at time ¢t = ¢; as Xy, . These values
that are known beforehand are inputs of the model, and in the literature, people typically say that these variables
“drive" the model.

Some state variables can be calculated from other state variables without explicit dependence on time. For
example, the total mass of the plant is the sum of leaf, stem, and root masses. This set of variables we’ll denote
as X (s for secondary variable).*

Other variables must be calculated from their rate of change. For example, the rate of change of leaf mass is
calculated from the photosynthetic rate, so the leaf mass at 10 a.m. is the leaf mass at 9 a.m. plus the rate of
change in units of mass per hour times one hour; that is, massipy = massg 4y + % % 1 1.2 The variables we
calculate from rates of change we’ll denote as X, (CD for calculated from differential equations).

Analogously to writing X;, to denote the state of the system X at time ¢ = ¢;, the “CD" component of this
state will be denoted Xy, op. Since in general, each Xy, op (for i > 0) depends on X, , (the state at time ¢;_1),
an initial value X, ¢, of the CD component of the state must be given as input to the model.?

We'll denote the function that describes how to calculate direct variables (X, s) from the other variables as
g. Thus, at any particular time ¢;, Xy, s = g(Xy, x U X,gz.ch).4 Note that, as this equation shows, X, s, the “s"
component of the state at time ¢;, depends only on the values of the variables in the other components of the
state at time ¢;.

As for the variables in the X, component of X, we can calculate the value of their derivatives with respect
to time—their rate of change—at any particular time ¢; from some or all of the variable values that comprise
the totality of the state X at time ¢;. We'll use h to denote the function that yields the derivative of the X,

component of the state at any time ¢; given the totality of the state at time ¢;. Thus, < (¢;) = h(X(¢;))"

The model can be solved by iterating through the following process for each time point ¢; starting with time
tO:

! These were called “steady state” variables in a previous version of this document, and as of this writing, that terminology is still
reflected in the BioCro software—both in the naming of variables and types of modules, and in the names of function parameters. It
was felt, however, that this was a somewhat confusing appropriation of a term that usually means “unvarying over time”. A possible
alternative name was “intermediate variable”, since a primary use of these variables is as convenience variables used in the calculating
of derivatives. But they are also useful program output in their own right, so “intermediate” didn't seem entirely appropriate.

? Here, 9mass s the average rate of change of mass over the period from 9 a.m. to 10 a.m. When using the forward Euler method,
the derivative at the beginning of the time interval (at 9 a.m.) is taken as a reasonable approximation of this value. Other numerical
methods used by BioCro to estimate how the state changes are more complex, but all involve the equations giving the rate of change
of the variables in the state at a given time ¢ based on the value of the variables in the state at time ¢.

We have used time units of hours here, but it is a goal to eventually use only Sl units within BioCro. The Sl base unit of time is
the second, not the hour.

3 X4y = Xig,x UXig,s UXeg,on, but since Xy, « is assumed to be known for all times ¢; (including to) and since Xy, can be
computed from X, x U X¢,,cp, the only remaining missing piece is Xy, cp.

* Denoting the set of known variables by K, the set of variables calculated from differential equations by c¢p, and the number of
variables in k, ¢D, and s by k[, |cD|, and |s| (respectively), then g is a vector-valued vector function from the (|x|+ |cDp|)-dimensional
Euclidean space whose axes are labelled by the variables of k and ¢b to the |s|-dimensional Euclidean space whose axes are labelled
by the variables of s.

Alternatively, we can think of g as a collection of functions {g, : v € s} where each g, maps a collection of values for the variables
in k and cD to a value for the variable v. These functions g, almost correspond to what we currently call direct modules in the
BioCro software. There are two ways in which they might differ, however. First, these modules may compute values for two or more
variables rather than just one. A module which calculates the values of variables u and v, for example, would correspond to a function
whose range has dimension two and which is defined by the rule x — (gu(x), gv(x)). The second way in which a module may differ
from a function g, is that it may, for convenience, take as input previously-computed values of other variables in s. While in theory,
each direct module could be restricted to use only variables in K U cD as input, in practice this would sometimes involve repetitious
calculation.

® The right-hand side could be written as h(Xy,); the two expressions X(t;) and X, essentially designate the same thing. The
connotations may be slightly different though. Using X(¢;) emphasizes that X is a state function, and when we write X(¢;), we are
evaluating that function at time ¢;. Writing X, emphasizes that we are dealing with the state yielded by that evaluation.

dXcp
dt

For the left-hand side, another commonly used notation is .
t=t;

1. Use the function g to calculate the value of the direct variables at time ¢; from the values at time ¢; of the
variables in K and ¢D.°

2. We now have full knowledge of the three components—the known variables, the direct variables, and the
variables that depend on differential equations—that comprise the full state X, at time ¢;.

3. Use the function h to calculate the derivatives (rates of change) at time ¢; of the variables in X,.
4. Use the rates of change to calculate new values (that is, the values at time ¢;,1) for the variables ¢D that

depend on differential equations.

This process is described somewhat more formally in the next section.

2.2 Mathematical summary
2.2.1 Model inputs

The inputs to the model are the following:’

X: The component of the system given as known for the entire simulation period.
Xo,cp: The initial values of those variables calculated using differential equations.
g: A function for obtaining the values X; ¢ from those of X; » and X; o, for any given time t.
h: A function for obtaining the derivatives of the variables in X, from the values X; for any given
time .

Table 1: Inputs to the model

2.2.2 Model equations

Whereas in the real world the state function X is a continuous function of time on some time interval of
interest [to, t,], in practice we consider only the value of X for some finite monotonically increasing sequence of
points of time tg, t1, t2, ..., t, within that interval. This is both because the so-called “known" variables are
known only at some finite set of instants in that interval and because it is a requirement of the numerical methods
used to solve the differential equations. The model can be solved using Euler's method by iterating through the
following process for each t = t; starting at t = ¢:°

XtuS = g(Xt,i,K U Xt,i,cn)
th‘ = thA,K U Xti,S U Xti,cn

dXe
G (1) = h(X(1)) &)
X,
Xti+1’cD = Xti,GD + % x At

5 Recall that values of the variables in cD are assumed to be known at time tg. For i > 0, the values of the variables in cp at time
t; are calculated in step 4 of the previous iteration.

7 Strictly speaking, it is probably more accurate to call only X« and Xg cp inputs to the model, and say that g and h define the
model. Here, we are somewhat anticipating the terminology of the BioCro software where all four items are input parameters to a
solver function that computes the output of the model. (See section 2.3.1.)

8 Other generally better methods for solving systems are available in BioCro, but in the discussion here, we shall stick to Euler’s
method so as not to overly complicate the presentation.

Here, At =t;+1 — t;. In general, it is assumed that the instants tg, t1, to, ..., t, are equally spaced so that
At is of fixed size.

2.3 Relating the mathematics to the program code
2.3.1 Function inputs

The R function run_biocro() accepts five parameters that correspond to the model inputs given in Table 1.
For convenience, X, is separated into variables that do or do not vary over the simulation period.’

Gro_solver() input | model equivalent
initial_values | Xy op
parameters | X, that do not vary with time.
varying_parameters | Xy that do vary with time.
steady_state_module_names | g

differential_module_names | h

Table 2: Gro_solver's inputs

State variables are represented as a paired name and value, for example (“Leaf”, 10). In programming parlance,
this is called a key-value pair; here “Leaf” is the key and “10" is the value. In R, the data types used to represent
collections of such pairs are 1ist (more specifically, a 1ist with named components) and data.frame.'’ For
example, if CD consists of a variable each for stem and leaf biomass, then to specify initial values (that is, Xy, cp)
one could use the following:

example_initial_values = list(Stem = 3, Leaf = 5)

str(example_initial_values)

List of 2
$ Stem: num 3
$ Leaf: num 5

example_initial_values$Leaf

[1] 5

example_initial_values[["Leaf"]]

[1] 5

9 The “unvarying” parameters are probably more properly viewed as parameters of the equations that make up g and h rather
than being considered to be part of the Xy component of the state function. Some of them in fact are physical constants and so
shouldn’t be viewed as parameters at all and are only a part of the state of the system in the most metaphysical of senses. But in
the programmatic implementation of the model, it proves useful to treat them as components of the state.

101n the underlying C4++ code, the corresponding structure is called a map. In mathematics, both “map” and “function” are used.
In our case, for example, the initial values Xy, is a mapping from the set of variable names to their values at time tg.

key_variable <- "Leaf"
example_initial_values[[key_variable]]

[1] 5

Lists are also used to specify values for the parameters argument.'!

Lists of parameters and modules are provided for soybean, miscanthus, and willow and are named using
names of the form cropname_initial_state, cropname_parameters, and cropname_modules;'’ for example,
willow_initial_state:

str(head(willow$initial _values))

List of 6

$ cwsil : num 0.32
$ cws2 : num 0.32
$ Grain : num O

$ Shell : num O

$ Leaf : num 0.02
$ leafdeathrate: num 5

varying_parameters, since it is made up of variables whose value changes over the course of time, must be
specified somewhat differently. In particular, the values of the key-value pairs comprising varying_parameters
will be vectors rather than single values, and the number of elements in these vectors will correspond to the
number of time points tg, t1, t2, ..., t, being sampled. Moreover, in order to correlate the values in these
vectors to particular points of time, vectors specifying the time must be included, and the time should be a
monotonically-increasing function of the vector index (in other words, the time values should be in “chronological
order”).*?

In the following example, the time is specified using vectors labelled year, doy (“day-of-year”), and hour.
example_drivers = data.frame(

year = c (2005, 2005),
c(1, 1),

y c(0, 1),
solar = c(0, 0),

temp = c(4.04, 3.03))
print (example_drivers)

year doy hour solar temp

' The Gro function also uses an R 1ist to specify the modules to be used. The keys in this case are a fixed set of six module
types, with the corresponding value naming an appropriate choice of module for the type specified. The Gro function parses out the
module names into two R character vectors, one containing the names of “direct” modules, the other names of “differential” modules.
These are then passed to Gro_solver.

12Such a list of modules is intended to be used with the Gro function; see the previous footnote.

13 As of this writing, the variable representing time that is most directly used in calculations is called doy_dbl. The integral portion
of a doy_dbl value represents the day-of-year (that is, 1 = January 1 and 365 = December 31 (or December 30 if it is a leap year))
and the fractional portion represents the hour of the day. For example, 73.5 would represent 12-noon on the 73rd day of the year.
Note that this means that doy_db1l represents the fractional number of days from the first instant of the new year plus one. In other
words, the doy_dbl values for January 1 run from 1.0 up to 2.0 rather than from 0 up to 1.0 so that 1.5 represents noon on January
1. Also, no allowance is made for switching to daylight-savings time.

The doy_dbl variable may be provided by the user directly, but usually, the user will supply separate vectors doy (for day-of-year)
and hour, and the doy_dbl component of varying_parameters will be computed and added by the software on the fly.

Currently, the year component, if given, is for informational purposes only and does not figure in the computation of doy_dbl.
This means that no provision is given for running systems with input data spanning multiple years except in a kind of hackish way
involving supplying doy_dbl directly and allowing values for it above 366.

1 2005 1 0
2 2005 1 1

o o
w
o o
» &

Data frames of weather data are provided to pass to varying_parameters. These are typically for one year
(January 1 to December 31) and should be subsetted to include only the period of growth. The function
get_growing_season_climate() is provided as one means of subsetting climate data.'* Here is a display of
weather data for 2005 showing the first few rows of the growing season:

head(get_growing_season_climate(weather$’2005°))

year doy hour time_zone_offset precip rh solar temp windspeed
2929 2000 123 0 -6 0 0.68 0 2.120 3.22
2930 2000 123 1 -6 0 0.70 0 1.720 2.86
2931 2000 123 2 -6 0 0.71 0 1.610 2.70
2932 2000 123 3 -6 0 0.72 0 1.130 2.99
2933 2000 123 4 -6 0 0.75 0 0.470 2.30
2934 2000 123 5 -6 0 0.79 36 -0.435 1.46

2.3.2 Function output

The output of Gro_solver (and of Gro) is a data.frame, which may be viewed as a table having one column for
each variable in initial_values as well as columns for the time variables doy (day of year), hour, and doy_dbl.
(Other columns may be included as well.) The table has one row for each row in varying_parameters, that is,
for each point of time for which there is input data.

year doy hour Stem Root Leaf
12005 1 0 0.990 1.00 0.020

2 2005 1 1 0.990 1.00 0.020
3 20056 1 2 0.990 1.00 0.021
4 2005 1 3 0.990 1.00 0.022
8759 2005 365 22 10.016 2.14 9e-08

8760 2005 365 23 10.016 2.14 9e-08

Table 3: A truncated listing of the output used to produce Figure 1

2.3.3 An example
In R, you can use the Gro() function to simulate the development of a crop as follows:

result <- with(miscanthus_x_giganteus, {run_biocro(
initial_values,
parameters,
get_growing_season_climate(weather$’2005’),
direct_modules,
differential_modules,
ode_solver

4 The get_growing_season_climate () function requires its argument to have a doy component as well as a temp (tempera-
ture) component.

D
xyplot (Stem + Leaf + Root ~ TTc, data=result)

3 Modifying the BioCro code

3.1 Organization of the source files

BioCro is provided as a package for R. The package subdirectories containing the source code are R for R
code and src for C/C++ code.

To understand the organization of the code, it is necessary to know a little about the data types in R and how
the R environment accesses compiled C/C++ code.

R provides C libraries that allow R code to call compiled code using C data types specific to the R environment.
Here, these libraries will be called R-to-C libraries.’® As an example, in R there is a numeric type that represents
real numbers. The closest equivalent to this in C is the double type.

As an example, we show how to write and compile a C function that squares its argument and how to call
that function from within R:

Contents of file squarer.c

/* Rinternals.h contains the bulk of the R—to—C library definitions: x*/
#include <Rinternals.h>

SEXP my _function (SEXP x) {
double new_x = REAL(x)[0];
SEXP result;
PROTECT(result = Rf_allocVector (REALSXP, 1));
REAL(result)[0] = new_x * new_x;
UNPROTECT (1);
return result;

To compile this, one may then run

R CMD SHLIB squarer.c
This will produce the library file squarer.so.°

Then to use this from R, open an R session and type the following commands:

> dyn.load("squarer.so") # make the C function available to R
> .Call("my_function", pi) # call my_function from R with argument pi
[1] 9.869604

15 In despite of the appellation “R-to-C”, keep in mind that data conversion happens in both directions: R input data types are
converted to C data types to use as C/C++ function input. The C data types returned by these functions are then converted to R
data types suitable for R function output.

16 1f this were to be compiled as a C++ program (as the BioCro source code is), one would have to wrap the my_function
definition with extern "C"{ ... }.

The SEXP data type is provided by the R-to-C libraries and can accommodate any of the data types used in
the R environment (for instance, numeric or character). The author of the C function must know what data type
is intended to be passed to the function. In this example, the REAL macro is used to convert x to an array of
doubles, and since there is only one element in the array, the first index (0) is accessed.'’ PROTECT (), UNPROTECT (),
and Rf_allocVector() are also required and are provided by the R-to-C libraries, but understanding them is not
necessary here.

Using the R-to-C libraries is tedious and error prone, and it is extremely easy to write code that will run but
produce hard-to-spot errors.'® The use of the R-to-C libraries should be limited, and they are not necessary at all
to add new models to BioCro. The libraries are described here only to fully understand the organization of the
code in the R package.

To sequester code that uses the R-to-C libraries, the code is conceptually organized into three groups: R code,
R-to-C code, and C/C++ code. R code is in the R directory. R-to-C code is contained in files that have names
that start with “R_"; these files and the files containing C/C++ code are in the src directory.

The functions that define the model—the functions that make up the vector-valued functions g and h—and
the code that iterates through the the equations in equation set 1 to solve the system being modelled are written
in C++ and are thus contained in files in the src directory (or one of its subdirectories). The functions that
implement g and h should be designed so that they do not rely on the R-to-C libraries in any way. Such a design
helps prevent mistakes from the error-prone R-to-C libraries and allows the functions to be used without R—in a
stand-alone C++ application, for instance.

Figure 2: The R-to-C libraries provide an interface between R scripts and compiled code. The files are organized
so that the R-to-C libraries are not mixed with the models. Model equations should only be written in the C/C++
code.

Part of the R environment
A

R-to-C files

.| C/C++ functions to convert between
R and C/C++ objects and

call the model functions.

R files
R functions that <
call compiled C functions.

C/C++ files
C/C++ functions corresponding
to the model equations.

!

~
Compiled code

R code should be written so that it only checks validity of arguments and calls R-to-C functions. R-to-C
code should only provide error checking and call C/C++ functions. That is, R and R-to-C functions should only
provide a way to access the models written in C/C++, and no modeling should be done in R or R-to-C code.

3.2 Adding new models*’

What follows are step-by-step instructions for writing modules and integrating them into the BioCro library.
We show instructions both for writing direct modules and for writing differential modules. In each case, we include

'7 Note that in R arrays begin with index 1 whereas C arrays begin with index 0.

18 A newer, purportedly better, R-C++ interface called Repp exists, but BioCro doesn’t currently use it.

19 Up until now, we have (mostly) used the term mode/ to refer to the system as a whole, and the dynamics of how it changes over
time. Here we are using it in a more specialized sense: we model the relationship between attributes of a state—how the values of
some select group of attributes of the state determine the values or the rate of change of the values of other attributes of the state.
A model of the dynamics of soil evaporation, for instance, is a component of the model of the system as a whole. When we are being
careful, we will use the term module to refer to the code (or the C++ class) that implements a model (in this more restricted sense),
but at times, we may use the two terms interchangably.

a running example; the actual code changes needed are shown in shadowboxes at the end of each step. (Full
listings of the finished code are given in the appendix.)

Following this, we show instructions for writing tests of the new modules.

3.2.1 Example: Steps for creating a direct module.

Suppose we want to write a module which builds upon the solar_zenith_angle module. That module, when
given the latitude, day of the year, and hour of the day as inputs, computes the cosine of the solar zenith angle.
We would like to use the cosine of the solar zenith angle to calculate the actual zenith angle in degrees. So we
shall write a module taking one input, “cosine zenith angle”, and computes the value of the angle itself. The
steps are as follows.

1. Decide on a name for the module. While in theory, the name could be anything (ideally, something giving
a concise description of the module), since we would like to follow the convention that the module name

doubles as the name of the class that implements the module, the name (without quotes) should be a valid
C++ identifier.””

"solar_zenith_angle_in_degrees" I

2. Make a new file called (module name).h in the src/module_library directory.”’

solar_zenith_angle_in_degrees.h I

3. Add appropriate header guards to the file.

#ifndef SOLAR_ZENITH_ANGLE_IN_DEGREES_H
#define SOLAR_ZENITH_ANGLE_IN_DEGREES_H

#endif

4. Add include directives to include the module base class declarations from module.h and the type aliases
from state_map.h.

#include "../module.h"

#include "../state_map.h"

5. Begin a declaration of a class for the module, deriving it from direct_module. The identifier used for the
class name should match the module name you decided upon in step 1.7

Include a Doxygen-style comment (that is, starting with /%) describing the module and its purpose im-
mediately above the class declaration. The first sentence should be a brief summary of the module. This

20 The quoted name is the “public’ name: when you specify the module in a BioCro R function, or if you use the BioCro C++
library in your own C++ code, it is the string name—the quoted name—that you use.

A valid C++ identifier must consist only of letters, digits and underscores; it cannot begin with a digit or match one of the C++
keywords. Additionally, to avoid conflicting with names reserved by the implementation, it should not begin with an underscore, and
it should not contain a sequence of two or more underscores or an underscore followed by a capital letter; in fact, for the sake of
uniformity, it is preferable to avoid capital letters in module names altogether. Although non-latin letters are allowed, it is best to
avoid them so encoding of source files does not become an issue.

21 Here, and in what follows, we use italicized descriptors in angle brackets as placeholders for actual names or parts of names of
files or variables. So, for example, if we have chosen “solar zenith angle in degrees’ as the module name, then (module name).h
designates solar_zenith_angle_in_degrees.h. Again, using the module name to form the file name is by convention, but a
useful one if one is trying to find the code that implements a model.

22 Here again, matching the class name to the module name is a convention. It won't break anything if you don't except perhaps
the expectations of readers of your code.

10

is followed by additional details or a fuller description. This is an appropriate place to include citations to
sources for equations used by the module in calculations, the reasoning and justification for the model, and
information to help the user determine when use of the model is appropriate.”®

See section 3.2.3 for how to quickly generate and view the documentation Doxygen produces from the
documentation markup that you write.

/

*

Given a value for the BioCro variable "cosine_zenith_angle",
compute and output a value for the variable
"zenith_angle_in_degrees" that corresponds to the angle having
the given cosine.

The module allows negative cosine values, corresponding to
positions of the sun below the horizon. If out-of-range values
for the cosine are given, the output variable is set to NalN
("not-a-number") .

*
*
*
*
*
*
*
*
*
*

*/

class solar_zenith_angle_in_degrees : public direct_module {

6. Inside the body of the class declaration, declare private data members corresponding to the input and
output parameters: Each member corresponding to an input parameter should be a reference of type
const double&.”* By convention, the identifier used for the reference should be called (parameter name),
that is, it should match the name of the corresponding parameter.”> Members corresponding to output
parameters should be of type double* and should have names of the form (parameter name)_op.?°

private:
// References to input parameters:
const double& cosine_zenith_angle;

// Pointers to output parameters:
double* zenith_angle_in_degrees_op;

7. Declare a public constructor with signature

(class name) (const state_map* input_quantities, state_map* output_quantities)

23 The function that actually uses the said equations will most likely be the do_operation function (or in some subsidiary function
called by it). But do_operation is a private function, so it is more appropriate to put “public” information here. Documentation of
do_operation, if any, should mostly be about programming details.

2% Most existing modules use pointers rather than references for the input parameter values. But there is no reason not to use a
reference, and it saves one from having to dereference the pointer when the value is used.

%5 There has been some discussion of relaxing this convention: As with module names, the (quoted) parameter name is the “public-
facing” name known to users of the BioCro R functions or the BioCro C++ library. As such, it might be desirable to be able to
use more natural-sounding and descriptive names (and be able to include spaces!) rather than being confined to only using names
the can be used in a C++ identifier. In other words, it would be nice if these parameter names were “user-centric” instead of
“programmer-centric”: it is more user-centric, for example, to output simulation results with a column names like “Relative Humidity”
and “Temperature” rather than “rh” and “temp”. (Your users will know without thinking that you aren't talking about blood types
and temporary workers!) There may, however, be other better ways of addressing this issue.

26 Be sure to consult the master parameter list to ensure you are using the input and output parameters correctly—that you are
not assigning new meanings to existing parameters, and that the units you are expecting as input and that you wish to see in output
match the units designated in that list. /f you are using a parameter whose name is not in that list, you will have to add it. [The
afore-mentioned master parameter list is, unfortunately, as of this writing, only slightly less fictional than Borges’ Library of Babel.]

11

The constructor needs to initialize the base class direct_module with the name for the module, and each
parameter variable needs to be initialized with an initializer of the form

(parameter name){get_input (input_quantities, "(parameter name)")}

(for input parameters), or

(parameter name)_op{get_op(output_quantities, "(parameter name)")}

(for output parameters).”’

public:
solar_zenith_angle_in_degrees(
const state_map* input_quantities,
state_map* output_quantities

: direct_module{"solar_zenith_angle_in_degrees"},
cosine_zenith_angle{get_input (input_quantities, "cosine_zenith_angle")},
zenith_angle_in_degrees_op{get_op(output_quantities, "zenith_angle_in_degrees")}

{3

8. Add the following static function declarations to the public section of the class body.

static string_vector get_inputs();

static string_vector get_outputs();

9. Add the following declaration to the private section to override the corresponding virtual function in the
base class.

// Implement the pure virtual function do_operation():
void do_operation() const override final;

10. Implement get_inputs(); the function should return a vector of the names of all of the input parameters.
The function body can be just a return statement with the returned value written in the form of a {}-list,
that is, a list of quoted strings of input parameter names, separated by commas and surrounded by curly
braces.

string_vector solar_zenith_angle_in_degrees::get_inputs() {
return {

"cosine_zenith_angle"

};

11. Implement get_outputs() similarly, returning a list of the names of all output parameters.

string_vector solar_zenith_angle_in_degrees::get_outputs() {
return {
"zenith_angle_in_degrees"

};

?TIn existing modules, where pointers rather than references are used for input parameters, the initialization code will use the
get_ip function instead of the get_input function: (parameter name)_ip{get ip(input quantities, " (parameter name)")}

12

12. Implement the do_operation() function. This is the heart of the module—it's where the real work gets
done. Generally, the body of this function should contain a statement of the form

update ({output parameter)_op, (some value)) ;

for each output parameter. Here, (some value) is some numerical value calculated in the body of the
function prior to the update statement, and it will generally be calculated from the values of the input
parameters. Computations often may entail the use of additional include directives, for example #include

<cmath> or #include "../constants.h". In our example, the function definition (along with the required
extra include directives) looks like this:

#include <cmath> // for acos
#include "../constants.h" // for pi

void solar_zenith_angle_in_degrees::do_operation() const {
double zenith_angle { acos(cosine_zenith_angle)
* 180 / math_constants::pi };
update (zenith_angle_in_degrees_op, zenith_angle) H

A listing of the completed module code is shown in appendix B.1.

Once the new module has been written, it must be integrated into the rest of the BioCro code. This involves
modifying the file module_library/module_library.cpp and requires two steps:

1. Add an include directive to include the header file for the new module.

#include "solar_zenith_angle_in_degrees.h" I

2. Add an entry to module_library: :module_wrapper_creators. Ihis will be a bracketed pair of the form

{"(module name)", &create_wrapper<(module name)>}

{"solar_zenith_angle_in_degrees", &create_wrapper<solar_zenith_angle_in_degrees>}

3.2.2 Example: Steps for creating a differential module.

Suppose that we have weather data giving the ambient temperature over some period of time and we wish to
write a module to help us calculate the (cumulative) number of heating degree days over that same period. This
is essentially the integral of the amount the ambient temperature falls short of some “threshold” or “base” tem-
perature, but counting negative amounts as zero. For this example, we will assume that the ambient temperature
is given in a variable called “temp” and the base temperature variable is named “base temperature”. These will
be varying and unvarying known variables, respectively.

The steps for writing such a module are similar to those for writing a direct module, but with some significant
differences.

1. Decide on a name for the module.

"heating_degree_days" I

13

. Make a new file called (module name).h in the src/module_library directory.

heating_degree_days.h I

. Add appropriate header guards to the file.

#ifndef HEATING_DEGREE_DAYS_H
#define HEATING_DEGREE_DAYS_H

#endif

. Add include directives to include the module base class declarations from module.h and the type aliases
fronlstate_map.h.

#include "../module.h"
#include "../state_map.h"

. Begin a declaration of a class for the module, deriving it from differential_module. The identifier used
for the class name should match the module name you decided upon in step 1.

class heating_degree_days : public differential_module {

. Declare private data members corresponding to the input and output parameters. Just as with direct
modules, input parameter references should be of type const double& and by convention should have
identifiers matching the parameter name. Output parameter pointers should be of type double* and should
have names of the form (parameter name)_op.

private:
// References to input parameters:
const double& temp;
const double& base_temperature;

// Pointers to output parameters:
double* heating_degree_days_op;

. Declare a public constructor with signature

(class name) (const state_map* input_quantities, state_map* output_quantities)

The constructor needs to initialize the base class differential_module with the name for the module, and
each parameter variable needs to be initialized with an initializer of the form

(parameter name){get_input (input_quantities, "(parameter name)")}

(for input parameters), or

(parameter name)_op{get_op(output_quantities, "(parameter name)")>}

14

10.

11.

12.

(for output parameters).

public:
heating_degree_days (
const state_map*
input_quantities,
state_map*
output_quantities

: differential_module{"heating_degree_days"},
temp{get_input (input_quantities, "temp")},
base_temperature{get_input (input_quantities, "base_temperature")},
heating_degree_days_op{get_op(output_quantities, "heating_degree_days")}
{3

Add the following static function declarations to the public section of the class body.

static string_vector get_inputs();
static string_vector get_outputs();

Add the following declaration to the private section to override the corresponding virtual function in the
base class.

// Implement the pure virtual function do_operation():

void do_operation() const override final;

Implement get_inputs(); the function should return a vector of the names of all of the input parameters.
The function body can be just a return statement with the returned value written in the form of a {}-list,
that is, a list of quoted strings of input parameter names, separated by commas and surrounded by curly

braces.

string_vector heating_degree_days::get_inputs() {
return {
"temp",
"base_temperature"

};

Implement get_outputs() similarly, returning a list of the names of all output parameters.

string_vector heating_degree_days::get_outputs() {
return {
"heating_degree_days"

};

Implement the do_operation() function. This is the heart of the module—it's where the real work gets
done. Generally, the body of this function should contain a statement of the form

update ({output parameter)_op,(some value)) ;

for each output parameter. Here, (some value) is some numerical value calculated in the body of the
function prior to the update statement, and it will generally be calculated from the values of the input

15

parameters. Since this is a differential module, it represents the rate of change per hour of the output
parameter.
Computations often may entail the use of additional include directives, for example #include <cmath> or

#include "../constants.h".

In our example, the function definition looks like this:

void heating_degree_days::do_operation() const {
double temperature_deficit { base_temperature > temp 7
(base_temperature - temp) : O};

)%

update (heating_degree_days_op, temperature_deficit / 24.0

A listing of the completed module code is shown in appendix B.2.

The steps for integrating the module into the rest of the BioCro code are exactly the same as for direct
modules, again only requiring a few modifications to module_library/module_library.cpp:

1. Add an include directive to include the header file for the new module.

#include "heating_degree_days.h" I

2. Add an entry to module_library: :module_wrapper_creators. This will be a bracketed pair of the form

{"(module name)", &create_wrapper<(module name)>}

{"heating_degree_days", &create_wrapper<heating_degree_days>}

3.2.3 Generating the Doxygen documentation

If you go to the BioCro documentation directory and type make help at the command line, you see information
about multiple options for generating and displaying the Doxygen documentation in various configurations. When
you are in the process of writing documentation, however, it is convenient to be able to quickly genererate the
HTML- or PDF-style documents for just the portion of the documentation you are working on. One way to do
this is as follows.

Suppose we are working on the documentation in the module file

src/module_1ibrary/solar_zenith_angle_in_degrees .h

Then we can quickly generate the HTML documentation for that file and view it by issuing the command

make source=../src/module_library/solar_zenith_angle_in_degrees.h \
output_directory=minimal view

What we have done here is we have re-purposed the make view command, which normally generates all of
the HTML documentation for the C++ source code, and overridden the default set of documented source files
and the default documentation output directory so that we only spend time generating the documentation for the
file of interest and so that the documentation is output to a different place (so that it won't corrupt any existing

28 We must divide by 24 here because we want the rate of change of heating degree days per hour.

16

documentation). Thus, we set source to the relative path to the file we are working on, and we set output to
the relative path to the directory under which we want the documentation files to appear.?’

If we want to generate and view the PDF documentation, we could use this command instead:

make source=../src/module_library/solar_zenith_angle_in_degrees.h \
output_directory=minimal view-pdf

3.3 Writing tests for new models

Once a new module has been written, a set of unit tests should be written to ensure that it works as expected.
For more about unit tests in R, see https://r-pkgs.org/tests.html. For general, non-language-specific
discussions of unit testing, see https://martinfowler.com/bliki/UnitTest.html or https://builtin.
com/software-engineering-perspectives/what-is-unit-testing.

Here are step-by-step instructions for writing unit tests of modules, using as examples the modules we have
just written.*"

3.3.1 Writing unit tests for a direct module

In writing our tests, we will make use of the R evaluate_module function. This function takes as input the
name of a module (as a string), and a list specifying values for all of the input parameters of the module. It
returns a list of values for the module's output parameters.

1. Create a file for the module tests in the directory tests/testthat. The file name should begin with “test-"
and end with “.R". A good name for the file would be something of the form test-(module name).R.

test-solar_zenith_angle_in_degrees.R I

2. At the top of the new file, add a context statement providing a general description of the tests in the file.
This will be a statement of the form context ("(some descriptive text)").

context (’Test basic functioning of the direct module "solar_zenith_angle_in_degrees".)

3. Write one or more tests.

Each test will be a statement of the form

test_that ("(overall test description)", {
(one or more statements, including statements of the form ezpect_*(...))

b

More specifically, each test will generally set input parameter values for the module and then call evaluate_module:

result <- evaluate_module("(module name)", (input parameter list))

2The name minimal for the output directory is arbitrary except that it is best to choose a name that doesn't
name an existing directory. Overriding output isn’'t strictly necessary, but if we don’t, the output will be written to
documentation/doxygen_docs_complete, a somewhat misleading name for the minimal documentation we are generating.
Moreover, any existing documentation in that location would be corrupted by the new minimal documentation we generate.

30 These instructions are for testing in R. It would be much more direct to use a C4++ testing framework to test C4++ code;
presumably such tests could test the module functions independently of the rest of the BioCro code, with a minimum of set-up and
tear-down code. But writing tests in R is simpler. Note, though, that this way of testing modules depends on the correct functioning
of the R interface to the BioCro C++ library. If the R front end is buggy, then the module tests may fail for reasons not having
anything to do with the underlying C++4 module.

17

https://r-pkgs.org/tests.html
https://martinfowler.com/bliki/UnitTest.html
https://builtin.com/software-engineering-perspectives/what-is-unit-testing
https://builtin.com/software-engineering-perspectives/what-is-unit-testing

The subsequent statements may then test various aspects of result.

The heart of a testthat test are the expectations. These are assertions of some condition that should
hold or some result that should be obtained from running the module code. They take the form of a
function call to any one of a number of functions whose names begin with the string expect_. We will
be primarily concerned with two such functions: expect_equal({actual value), (expected value)), which
tests that its two arguments are equal (give or take some small amount, which can be specfied explicitely
by supplying a third argument of the form tolerance = (some small number)); and expect_true((some
boolean condition)), which tests that some condition holds. More about expect_ functions can be found
in the section on expect functions in the book R Packages by Hadley Wickham and Jenny Bryan; the
full complement of expect_ functions is listed and documented at https://cran.r-project.org/web/
packages/testthat/testthat.pdf.

What should be tested? Here are some possibilities:

(a) Sample values that produce recognizable results.
From elementary trignometry, we know, for example, that the angle between 0° and 180° having a
cosine of 0.5 is 60°. We can test that this is the actual result obtained from our module with a simple
test. We can write our test as follows:

test_that("When the cosine is 1/2, the angle is 60 degrees.", {
input_quantities <- list(cosine_zenith_angle = 0.5)
result = evaluate_module("solar_zenith_angle_in_degrees”, input_quantities)

expect_equal (result$zenith_angle_in_degrees, 60)

b

Since we will likely call evaluate_module in each test, and with the same value for the module name
each time, we can write a helper function to factor the repetitious code out of our tests; for example,

angle_from_cosine <- function(cza) {
input_quantities <- list(cosine_zenith_angle = cza)
result <- evaluate_module("solar_zenith_angle_in_degrees", input_quantities)
result$zenith_angle_in_degrees

}

Then our test becomes simply

test_that("When the cosine is 1/2, the angle is 60 degrees.", {
angle <- angle_from_cosine(0.5)

expect_equal (angle, 60)

b

(b) Edge cases.

It often makes sense to test module operation at the very limit of allowable values. For the cosine of
an angle, these limits are plus and minus one.!

test_that("When the cosine is 1, the angle is 0 degrees", {
angle <- angle_from_cosine(1)
expect_equal (angle, 0)

1))

test_that("When the cosine is -1, the angle is 180 degrees", {
angle <- angle_from_cosine(-1)
expect_equal (angle, 180)

b

3! Note that zenith angles greater than 90° correspond to the sun being below the horizon.

18

https://r-pkgs.org/tests.html#expectations
https://r-pkgs.org/
https://cran.r-project.org/web/packages/testthat/testthat.pdf
https://cran.r-project.org/web/packages/testthat/testthat.pdf

(c) It's a good idea to test how the module behaves when given input that is out of bounds.

What should the module in our example do when given a value for the cosine that is greater than one
or less than minus one? We'll assume it should return NaN (“not-a-number”).

test_that("When the cosine is more than 1, the angle is not a number", {
angle <- angle_from_cosine(1.000000001)
expect_true(is.nan(angle))

b

test_that ("When the cosine is less than -1, the angle is not a number", {
angle <- angle_from_cosine(-1.000000001)
expect_true(is.nan(angle))

b

(d) Lastly, if you discover a bug in your module, it's a good idea to write a test that demonstrates the
bug—a test that will pass once the bug is fixed and ensures it stays fixed if later changes are made.

A listing of the complete test file is shown in appendix B.3.

3.3.2 Writing unit tests for a differential module

Again, in writing our tests, we will make use of the R evaluate_module function. Keep in mind that in the
case of a differential module, the output values represent the rate of change of the output parameters per hour.
Here, we show how to test the heating degree days module.

1. Make a file for the test.

test-heating_degree_days.R I

2. Add a context statement.

context (’Test basic functioning of the differential module "heating_degree_days".’) I

3. Write tests.

A sample test file, with comments, for the heating_degree_days module is shown in appendix B.4.

3.3.3 Running the tests

Perhaps the easiest way to run all of the testthat tests is to use the devtools package: assuming you have an
R session open in a directory inside the BioCro source tree and devtools has been loaded, simply do this:

test ()

If you use RStudio, you needn't even type: choosing “Test Package” from the Build menu, or simply using
the keyboard-shortcut “Ctrl/Cmd + Shift + T will suffice. This method of running the tests has the added
advantage that a test producing a segmentation fault won't crash the whole R session .’

32 If you don’t have the devtools package installed or haven't checked the "Use devtools package functions if available" checkbox
in the build configuration pane, the RStudio “Test Package” command will still work (assuming the testthat package itself has been
installed), but it won't do quite the same thing. Instead of simply running all of the testthat tests, it will run all of the .R files
in the tests directory. Since one of these files, testthat.R, runs all of the testthat tests, this will essentially amount to the same
thing unless there are other .R files in the tests directory.

19

test () will run all tests against the version of BioCro represented by the source code. To learn how to run
the tests against an installed version, run the tests in only some of the files, or avoid installing devtools, consult
the readme file tests/README .md.

20

Appendix A Writing unit tests using Gro _solver

The section on writing unit tests was originally written in such a way that the tests called the run_biocro
function. This method of testing a module entails setting up a complete system and running a full simulation,
albeit perhaps one with a very limited time span.

A much more convenient way to write tests is to use the evaluate_module function. This is the method
we demonstrate in section 3.3. By using evaluate_module, we can test the basic functioning of a module while
avoiding all of the many steps needed to set up a full system for running a simulation.

There may be cases, however, where we may still want the flexibility offered by being able to specify and
run a full simulation. Some of the things we can do with a full-fledged system that we can’t do just by calling
evaluate_module include

e testing how multiple modules work in conjunction with one another

e testing how the module chosen affects the evolution of a system over time

e testing how a module functions in the context of different solvers

Thus, it may be useful to present the steps required to write a test that sets up and runs a complete system;
and so here, by way of some simple examples, we re-present the material from section 3.3, this time showing how

to write tests using run_biocro instead of evaluate_module. As an added benefit, writing such tests will instruct
a user in the rudiments of setting up and running a simulation in BioCro.

A.1 Writing a unit test for a direct module using Gro _solver

For testing a direct module, it will suffice to set up a bare-bones system: the sequence of states can be a
sequence of length one since we aren’t interested in how the state changes over time. And the state variables
need only include the input variables for the module being tested plus certain time-related variables.

1 & 2. Steps 1 and 2 are exactly as in section 3.3.1.

The third step is “new”, as it involves setting up parameters for the run_biocro function, something we don’t
need to do when using evaluate_module:

3. Define parameters for the run_biocro function. Assuming we call run_biocro as

run_biocro(initial_values, parameters, drivers,
direct_modules, differential_modules, solver, verbose)

we have seven variables we need to define:

initial_values <- ...
parameters <-

drivers <-
direct_modules <- ...
differential_modules <-
solver <- ...

verbose <-

(The last two have default values of

1ist(type=’Gro’, output_step_size=1.0, adaptive_rel_error_tol=le-4,
adaptive_abs_error_tol=1le-4, adaptive_max_steps=200)

21

and FALSE, respectively. Since it doesn’t matter what solver we use for testing a direct module, and since
in general tests shouldn’t produce their own output, these are suitable values and may be omitted.)*’

What values should be used to fill in the blanks? For the module lists, which are just vectors of names, the
answer is clear:

direct_modules <- c("(name of module being tested)")
differential_modules <- c()

These may be defined globally, outside of any test. The name of the module should exactly match the name
as specified in the key of the entry for the module in module_wrapper_creators.

In our example, we use

direct_modules <- c("solar_zenith_angle_in_degrees")

differential_modules <- c()

On the other hand, values for the module input parameters and for the initial values may potentially vary
with each test. The keys, however, will in most cases be uniform across tests. For example, if the module
inputs consist of parameters py, py, ..., pg, drivers dq, da, ..., d,,, and initial values ivy, iva, ..., iv,,
then we will be setting the corresponding function parameters to values of the following forms:

parameters <- list(p_1 = ___, p.2=___, ..., p.k=___)
drivers <- list(d_1 = ___, d_2 = ___, ., dm=___)
initial_values <- list(iv_1 = ___, iv_2 = ___, ., iv_n = ___)

As mentioned above, since we are setting up the most stripped-down of systems, these lists will be very
short: we need to include a setting for each input parameter of the module being tested, and we need
to include certain time-related settings. In particular, the invariant parameter list must include a setting
for timestep, and the drivers must include either a setting for time or for both doy and hour. The values
assigned to the time-related variables is immaterial for the purposes of the test except in the case that one
of them is also an input to the module being tested. (The solar_zenith_angle module, for example, takes
time as an input.) It is best, however, to assign values that might make sense in the simulation of a “real”
system.

As for which list should include the module input variable values, this too is largely immaterial for the
purposes of running the test. But again, to minimize confusion, it is best to include the setting in the list
that would make sense in a real system. So, for example, if it is a parameter that normally varies over
the course of time, then it doesn’t make sense to assign it in the parameters list, and if it varies over
time but not in a way that can be predicted from rates of change, then it shouldn't be assigned within the
initial_values.

For our example, we use settings as follows.

parameters <- list(timestep = 1)
drivers <- list(time = 1,

cosine_zenith_angle = (some value that will vary from test to test))
initial_values <- list()

4. Write one or more tests.
As in section 3.3.1, each test will be a statement of the form

test_that ("(overall test description)", {
(one or more statements, including statements of the form ezpect_*(...))

b

33 There may be cases where we may want to temporarily set verbose to TRUE in order to debug a test we are writing. In this case,
if we want to default the value of solver, we must use a named argument to set the verbose argument and write ‘'verbose=TRUE’
instead of just ‘TRUE’ so that TRUE is not taken to be the value for solver.

22

However, instead of getting results to test by calling evaluate_module, we call run_biocro instead:

result = run_biocro(initial_values, parameters, drivers, direct_modules,
differential_modules)

As before, the various expect_ functions are used to test result. In fact, once we make some global
parameter settings and re-define our helper function angle_from_cosine to utilize run_biocro instead of
evaluate_module, the tests themselves can remain exactly as in section 3.3.1.

Here are the precise settings we will use for the modules, invariant parameters, and initial values:

direct_modules <- c("solar_zenith_angle_in_degrees")
differential_modules <- c()

initial_values <- 1list()
parameters <- list(timestep = 1)

The helper function angle_from_cosine becomes:**

angle_from_cosine <- function(cza) {
drivers <- list(time = 1, cosine_zenith_angle = cza)
result = run_biocro(initial_values, parameters, drivers, direct_modules,
differential_modules)
result$zenith_angle_in_degrees

}

A listing of the complete test file is shown in appendix B.5.

A.2 Writing unit tests for a differential module using Gro _solver

Again, it will suffice to set up a bare-bones system. But this time, we will set up a time sequence of length
two or more since we want to see how the derivative affects how the state changes over time. For the most basic
tests of module functionality, we need only use a sequence of two states. Again, the state variables need only
include the input variables for the module being tested and the time-related variables.*®

Here, we show how to test the heating degree days module using run_biocro.
1 & 2. Steps 1 and 2 are exactly the same as in section 3.3.2.
Again, we need an extra step for setting up some run_biocro parameters:

3. Define parameters for the run_biocro function. Again, we will be assuming we call run_biocro with

run_biocro(initial_values, parameters, drivers,
direct_modules, differential_modules, solver, verbose)

The assignments for the two module vectors are more or less the reverse of what they were for the direct
module test:

34 We make no attempt here to coordinate the input values for cosine_zenith_angle and for time. While in general we prefer
to use input values that might be associated with a realistic system, for the purposes of writing tests of a module, it may sometimes
be more convenient not to do so.

35 In the case of a differential module where some of the inputs correspond to outputs of direct modules, we have two choices with
regard to testing: (1) include, as part of the test, direct modules that produce these required inputs; (2) artificially include values for
these inputs as part of the varying parameters. The latter option is the simplest and has the advantage of narrowing the scope of the
test to the module we are most interested in testing. But there may be cases where we want to test how two or more modules work
in conjunction with one another.

23

direct_modules <- c()
differential_modules <- c("(name of module being tested)™)

For our example, this becomes

direct_modules <- c()

differential_modules <- c("heating_degree_days")

As for initial_values, parameters, and drivers, we may want to vary each of these from test to test. We
may also want to run tests using various solvers and vary the timestep.

For our example, we’ll write a global helper function that makes this easy.

calculate_heating_degree_days <- function(initial_value, time_vector,
temperature_vector, threshold_temperature, timestep, solver) {
initial_values <- list(heating_degree_days = initial_value)
parameters <- list(base_temperature = threshold_temperature, timestep = timestep)
drivers <- list(time = time_vector, temp = temperature_vector)

result <- run_biocro(initial_values, parameters, drivers,
direct_modules, differential_modules, solver)

result$heating_degree_days[length(time_vector)]
}

4. Write tests.

A sample test file, with comments, for the heating_degree_days module is shown in appendix B.6.

Appendix B Code listings

B.1 Full listing of solar-zenith-angle-in-degrees module

(In this listing, we have expanded the class's Doxygen comment to demonstrate how LaTeX-style equations
could be included, if desired. See section 3.2.3 for instructions on how to quickly and easily generate and display
the resulting HTML and PDF forms of the Doxygen documentation.)

#ifndef SOLAR_ZENITH_ANGLE_IN_DEGREES_H
#define SOLAR_ZENITH_ANGLE_IN_DEGREES_H

#include <cmath> // for acos
#include "../constants.h" // for pi
#include "../module.h"

#include "../state_map.h"

/%%

* Given a value for the BioCro variable '"cosine_zenith_angle",

* compute and output a value for the variable

* "zenith_angle_in_degrees" that corresponds to the angle having the
* given cosine.

*

* The module allows negative cosine values, corresponding to

* positions of the sun below the horizon. If out-of-range values
* for the cosine are given, the output variable is set to Nal

* ("not-a-number").

*

24

Denoting the zenith angle by \f$\theta_s\f$ and its cosine by
\f$x\f$, the formula used to compute \f$\theta_s\f$ (in degrees)
from \f$x\f$ is
\f[
\theta_s =
\begin{cases} \arccos(x) \cdot 180/\pi, & \text{if }-1 \le x \le 1; \\
\text{undefined,} & \text{otherwise.}

* K K K ¥

\end{cases}
\£]
where the usual range \f$ 0 \le x \le \pi \f$ for the \f$\arccos\f$
function is used and undefined values are represented by NaNl.

* K ¥ ¥

*/

class solar_zenith_angle_in_degrees : public direct_module {

public:
solar_zenith_angle_in_degrees(const state_map& input_quantities, state_map*
output_quantities)
: direct_module{"solar_zenith_angle_in_degrees"},
cosine_zenith_angle{get_input (input_quantities, "cosine_zenith_angle")},
zenith_angle_in_degrees_op{get_op(output_quantities, "zenith_angle_in_degrees")}

{3

static string_vector get_inputs();
static string_vector get_outputs();

private:
// References to input parameters:
const double& cosine_zenith_angle;

// Pointers to output parameters:
double* zenith_angle_in_degrees_op;

// Implement the pure virtual function do_operation():
void do_operation() const override final;

};

string_vector solar_zenith_angle_in_degrees::get_inputs() {
return {
"cosine_zenith_angle"

};

string_vector solar_zenith_angle_in_degrees::get_outputs() {
return {
"zenith_angle_in_degrees"

};

void solar_zenith_angle_in_degrees::do_operation() const {
double zenith_angle { acos(cosine_zenith_angle)
* 180 / math_constants::pi };
update(zenith_angle_in_degrees_op, zenith_angle);

#endif

25

B.2 Full listing of heating-degree-days module

#ifndef HEATING_DEGREE_DAYS_H
#define HEATING_DEGREE_DAYS_H

#include "../module.h"
#include "../state_map.h"

class heating_degree_days : public differential_module {

public:
heating_degree_days (
const state_map&
input_quantities,
state_map*
output_quantities

: differential_module{"heating_degree_days"},
temp{get_input (input_quantities, "temp")},
base_temperature{get_input (input_quantities, "base_temperature")},
heating_degree_days_op{get_op(output_quantities, "heating_degree_days")}
{}

static string_vector get_inputs();
static string_vector get_outputs();

private:
// References to input parameters:
const double& temp;
const double& base_temperature;

// Pointers to output parameters:
double* heating_degree_days_op;

// Implement the pure virtual function do_operation():
void do_operation() const override final;

3
string_vector heating_degree_days::get_inputs() {
return {
lltempll s
"base_temperature"
3

string_vector heating_degree_days::get_outputs() {
return {
"heating_degree_days"
I

void heating_degree_days::do_operation() const {
double temperature_deficit { base_temperature > temp 7
(base_temperature - temp) : O };
update (heating_degree_days_op, temperature_deficit / 24.0);

26

#endif
B.3 Full listing of the unit-test file for solar-zenith-angle-in-degrees

context (’Test basic functioning of the direct module ”solar_zenith_angle_in_degrees".’)

Run the module using a cza as the the value of the cosine of the
zenith angle and return the value of zenith_angle_in_degrees from
the result.
angle_from_cosine <- function(cza) {

input_quantities <- list(cosine_zenith_angle = cza)

result <- evaluate_module("solar_zenith_angle_in_degrees", input_quantities)

result$zenith_angle_in_degrees

test_that("When the cosine is 1/2, the angle is 60 degrees.", {
angle <- angle_from_cosine(0.5)
expect_equal (angle, 60)

b

test_that("When the cosine is 1, the angle is 0 degrees", {
angle <- angle_from_cosine(1)
expect_equal (angle, 0)

1))

test_that("When the cosine is -1, the angle is 180 degrees", {
angle <- angle_from_cosine(-1)
expect_equal (angle, 180)

b

test_that ("When the cosine is more than 1, the angle is not a number", {
angle <- angle_from_cosine(1.000000001)
expect_true(is.nan(angle))

b

test_that("When the cosine is less than -1, the angle is not a number", {
angle <- angle_from_cosine(-1.000000001)
expect_true(is.nan(angle))

b
B.4 Full listing of the unit-test file for heating-degree-days

context (’Test basic functioning of the differential module "heating_degree_days".’)

Given the (average) ambient temperature over an hour-long interval

and given a threshold temperature, return the number of heating

degree days that accumulate over the interval.

calculate_heating_degree_days <- function(ambient_temperature, threshold_temperature) {
input_quantities <- list(temp = ambient_temperature, base_temperature =

threshold_temperature)

result <- evaluate_module("heating_degree_days", input_quantities)
result$heating_degree_days

27

threshold_temperature = 18.3 # 765 deg F

test_that("If the ambient temperature is one degree below the threshold temperature, 1/24 of
a heating degree day accumulates in each hour interval", {
ambient_temperature = threshold_temperature - 1
hdd <- calculate_heating_degree_days(ambient_temperature, threshold_temperature)
expect_equal (hdd, 1/24)

1))

test_that("When the ambient temperature is equal to the threshold temperature, no heating
degree days accumulate", {
ambient_temperature = threshold_temperature
hdd <- calculate_heating_degree_days(ambient_temperature, threshold_temperature)
expect_equal (hdd, 0)

b

test_that("When the ambient temperature is greater than the threshold temperature, no

heating degree days accumulate", {

number_of_samples <- 10

temperature_surpluses <- sample(1:200, number_of_samples)/10 # test surpluses in the
range of 0.1 to 20.0

for (surplus in temperature_surpluses) {
ambient_temperature = threshold_temperature + surplus
hdd <- calculate_heating_degree_days(ambient_temperature, threshold_temperature)
expect_equal (hdd, 0)

b

test_that("When the ambient temperature is less than the threshold temperature, the heating
degree day accumulation for the hour interval is 1/24 the difference", {
number_of_samples <- 10
temperature_deficits <- sample(1:500, number_of_samples)/10 # test deficits in the range
of 0.1 to 50.0
for (deficit in temperature_deficits) {
ambient_temperature = threshold_temperature - deficit
hdd <- calculate_heating_degree_days(ambient_temperature, threshold_temperature)
expect_equal(hdd, deficit/24)

1))

B.5 Full listing of the unit-test file for solar-zenith-angle-in-degrees—Gro _solver
version

context (’Test basic functioning of the direct module ”solar_zenith_angle_in_degrees".’)

direct_modules <- c("solar_zenith_angle_in_degrees")
differential_modules <- c()

initial_values <- list()
parameters <- list(timestep = 1)

Run the system using a cza as the the value of the cosine of the
zenith angle and return the value of zenith_angle_in_degrees from
the result.

angle_from_cosine <- function(cza) {

28

For these tests, the value of time is immaterial, but either
time or both doy and hour must be in the list of keys for

drivers.

drivers <- list(time = 1, cosine_zenith_angle = cza)

result = run_biocro(initial_values, parameters, drivers, direct_modules,
differential_modules)

result$zenith_angle_in_degrees

test_that("When the cosine is 1/2, the angle is 60 degrees.", {
angle <- angle_from_cosine(0.5)
expect_equal (angle, 60)

b

test_that("When the cosine is 1, the angle is 0 degrees", {
angle <- angle_from_cosine(1)
expect_equal (angle, 0)

1))

test_that("When the cosine is -1, the angle is 180 degrees", {
angle <- angle_from_cosine(-1)
expect_equal (angle, 180)

b

test_that ("When the cosine is more than 1, the angle is not a number", {
angle <- angle_from_cosine(1.000000001)
expect_true(is.nan(angle))

b

test_that("When the cosine is less than -1, the angle is not a number", {
angle <- angle_from_cosine(-1.000000001)
expect_true(is.nan(angle))

b
B.6 Full listing of the unit-test file for heating-degree-days—Gro _solver version

context (’Test basic functioning of the differential module "heating_degree_days".?)

direct_modules <- c()
differential_modules <- c("heating_degree_days")

Given an initial value for the number of heating degree days, a

vector of equally-spaced time values (as fractional day-of-year

values), a corresponding vector of temperatures, a threshold

temperature value, a timestep value, and the specification of a

solver, run the system and return the final heating-degree-days

value.

calculate_heating_degree_days <- function(initial_value, time_vector, temperature_vector,
threshold_temperature, timestep, solver) {
initial_values <- list(heating_degree_days = initial_value)
parameters <- list(base_temperature = threshold_temperature, timestep = timestep)
drivers <- list(time = time_vector, temp = temperature_vector)

result <- run_biocro(initial_values, parameters, drivers,
direct_modules, differential_modules, solver)

29

result$heating_degree_days[length(time_vector)]

euler_solvers <- list(
list(type=’homemade_euler’, output_step_size=1, adaptive_rel_error_tol=le-4,
adaptive_abs_error_tol=le-4, adaptive_max_steps=200),
1ist(type=’boost_eu1er’, output_step_size=1, adaptive_rel_error_tol=le-4,
adaptive_abs_error_tol=le-4, adaptive_max_steps=200)

other_solvers <- list(
1ist(type=’boost_rk4’, output_step_size=1, adaptive_rel_error_tol=le-4,
adaptive_abs_error_tol=le-4, adaptive_max_steps=200),
list(type=’boost_rkck54’, output_step_size=1, adaptive_rel_error_tol=le-4,
adaptive_abs_error_tol=le-4, adaptive_max_steps=200)

non_euler_solvers <- c(other_solvers, 1ist(1ist(type=’boost_rosenbrock’, output_step_size=1,
adaptive_rel_error_tol=le-4, adaptive_abs_error_tol=le-4, adaptive_max_steps=200)))

well_behaved_solvers <- c(euler_solvers, other_solvers) # Rosenbrook solver doesn’t work
with time sequences of length less than 3.

all_solvers <- c(euler_solvers, non_euler_solvers)

test_that("A day at one degree below the threshold temperature adds 1 heating degree day", {
test using 24-hour timesteps:
for (i in 1:length(well_behaved_solvers)) {
hdd <- calculate_heating_degree_days (

0, # start at zero heating-degree days

c(1, 2), # days-of-year 1 and 2

c(19, 19), # assume a constant ambient temperature of 19 degrees

20, # ... which is one degree below the threshold temperature

24, # the time interval is 24 hours--the time between successive days

well_behaved_solvers[[i]]
)
expect_equal (hdd, 1.0)
}
test using 1-hour timesteps:
for (i in 1:length(all_solvers)) {
hdd <- calculate_heating_degree_days (

0, # start at zero heating-degree days

seq(1, 2, 1/24.0), # a sequence of times one-hour apart covering one day
rep(19, 25), # assume a constant ambient temperature of 19 degrees

20, # ... which is one degree below the threshold temperature
1, # the time interval is 1 hour

all_solvers[[il])
expect_equal (hdd, 1.0)

b

test_that("A random assortment of temperatures below the threshold
temperature yields a number of heating degree days equal to the
cumulative amount by which the temperatures are under the
threshold temperature.", {
days <- 30
temperature_deficits <- sample(0:50, days)
cumulative_temperature_deficit <- sum(temperature_deficits[l:(days - 1)]) #

30

Don’t count the last day’s temperature.
temperatures <- 20 - temperature_deficits

for (i in 1:length(euler_solvers)) {
hdd <- calculate_heating_degree_days(

0, # start at zero heating-degree days

1:days,

temperatures, # a random sequence of temperatures below the
threshold temperature

20, # the threshold temperature

24, # the time interval is 24 hours--the time between

successive days
euler_solvers[[i]])
expect_equal (hdd, cumulative_temperature_deficit)

For the non-Euler solvers, we have set a greater tolerance value than the
default:

for (i in 1:length(non_euler_solvers)) {
hdd <- calculate_heating_degree_days(

0, # start at zero heating-degree days

1:days,

temperatures, # a random sequence of temperatures below the
threshold temperature

20, # the threshold temperature

24, # the time interval is 24 hours--the time between

successive days
non_euler_solvers[[i]])
expect_equal (hdd, cumulative_temperature_deficit, tolerance = 0.03)

}
}
)
test_that("A random assortment of temperatures above the threshold
temperature results in zero heating degree days.", {
days <- 30

temperature_surpluses <- sample(0:50, days)
temperatures <- 20 + temperature_surpluses

for (i in 1:length(all_solvers)) {
hdd <- calculate_heating_degree_days(

0, # start at zero heating-degree days

1:days,

temperatures, # a random sequence of temperatures above the threshold
temperature

20, # the threshold temperature

24, # the time interval is 24 hours--the time between

successive days
all_solvers[[i]])
expect_equal(hdd, 0)

31

	Disclaimer
	Plant growth as a system of differential equations
	Overview
	Mathematical summary
	Model inputs
	Model equations

	Relating the mathematics to the program code
	Function inputs
	Function output
	An example

	Modifying the BioCro code
	Organization of the source files
	Adding new models
	Example: Steps for creating a direct module.
	Example: Steps for creating a differential module.
	Generating the Doxygen documentation

	Writing tests for new models
	Writing unit tests for a direct module
	Writing unit tests for a differential module
	Running the tests

	Writing unit tests using Gro_solver
	Writing a unit test for a direct module using Gro_solver
	Writing unit tests for a differential module using Gro_solver

	Code listings
	Full listing of solar-zenith-angle-in-degrees module
	Full listing of heating-degree-days module
	Full listing of the unit-test file for solar-zenith-angle-in-degrees
	Full listing of the unit-test file for heating-degree-days
	Full listing of the unit-test file for solar-zenith-angle-in-degrees—Gro_solver version
	Full listing of the unit-test file for heating-degree-days—Gro_solver version

