
BioCro as a Dynamical System

Contents

1 Dynamical systems, real and mathematical 2

1.1 An example: the falling-body problem . 2

1.2 Some comments on mathematical abstraction . 3

2 Continuous time versus discrete time 4

2.1 Euler’s method . 4

2.2 Applying Euler’s method to the falling-body problem . 4

2.3 Note about abstraction and recursive systems . 5

3 An overview of some abstract dynamical system formulations 6

3.1 Some notational preliminaries . 6

3.2 The Khalil model . 8

3.2.1 Variants of Khalil’s model . 9

3.3 The Giunti-Mazzola model . 9

3.4 The Barreira-Valls model . 10

4 The BioCro model 11

4.1 Elaboration on the Khalil model . 11

4.2 BioCro viewed in terms of the Khalil model . 13

4.3 BioCro’s concept of time . 15

4.4 BioCro’s concept of state . 16

4.4.1 BioCro state and the Khalil model . 16

4.4.2 BioCro state and the Giunti model . 17

4.4.3 The state space as a manifold . 18

4.5 Modularization in BioCro . 20

4.5.1 Modularization of the derivative function . 20

4.5.2 Decomposing the direct module function . 21

1

Appendix: Degenerate BioCro systems 25

A minimal system . 25

A system having a differential variable but no differential module 25

An off-label use of run_biocro . 26

A system having only drivers (and the obligatory timestep parameter) 26

References 27

1 Dynamical systems, real and mathematical

In his book Computation, Dynamics, and Cognition (Giunti 1997), Giunti distinguishes between real dy-
namical systems and mathematical dynamical systems:

A real dynamical system is any real system that changes over time. Therefore, since any real
system can be thought to change in time (in some respect), any real system is a real dynamical
system. A mathematical dynamical system, on the other hand, is an abstract mathematical
structure that can be used to describe the change of a real system as an evolution through a
series of states.

It should be emphasized that when we create a mathematical system to model a real one, we are doing
more than just quantifying attributes of the real system; we are also selecting which attributes to incorporate
into our model and which ones to ignore. For there are an endless variety of attributes which could describe
the state of a real system, and we can’t even begin to hope to be able to model all of them.

As stated in the Giunti quote, a mathematical dynamical system will describe the change of a real
system as an evolution through a series of states. (For now, we will interpret “series of states” loosely, so as
to encompass models that describe this change as a continuous evolution of the system state as well as those
that describe change in terms of a discrete sequence of states.) The real usefulness of such a mathematical
structure, however, comes when it goes beyond merely describing the series of states: the real power comes
when we are able to derive a complete picture of the evolution of a system from only partial knowledge of the
system, knowledge possibly consisting of, for example, the state of the system at some particular time, the
environment in which the system is operating, and some general knowledge of the processes that determine
how the system behaves.

1.1 An example: the falling-body problem

A classic example from physics is the falling-body problem: Given a stationary, compact, relatively dense
object dropped from a height ℎ0 above the surface of the earth, what will be its height after a duration of
time 𝑡? The partial knowledge we have of this system consists of:

1. the initial height ℎ0 of the object

2. the initial velocity 𝑣0 of the object (In this system, we’ll assume 𝑣0 = 0: the object is stationary to
begin with.)

3. the magnitude, which we’ll call 𝑔, of the downward acceleration of the body caused by the earth’s
gravitational field

2

If we use the function ℎ(𝑡) to embody the complete description of the evolution of the system—that is
ℎ(𝑡) tells the height of the body after an elapsed time of 𝑡—then our initial knowledge of the system consists
of a system of equations putting certain constraints on the function ℎ:

ℎ(0) = ℎ0
ℎ′(𝑡)∣𝑡=0 = 0 (1.1)

ℎ″(𝑡) = −𝑔

(The third constraint would more accurately be written as

ℎ″(𝑡) = −𝑔 if h(t) > 0,

but for simplicity, we will only consider the system over durations sufficiently small that the object has not
yet hit the ground.)

In the field of differential equations, this is known as an initial-value problem, and it can be shown that
its unique solution is given by

ℎ(𝑡) = ℎ0 − 1/2 𝑔𝑡2.
Thus, from knowing only the initial height and velocity of the object and some basic principles of physics,
we are able to obtain a complete description of the evolution of this “falling object” system over time.

1.2 Some comments on mathematical abstraction

As we mentioned, any mathematical dynamical system that purports to model a real system will necessarily
leave much out. In choosing what attributes to retain in our abstract model, there are two main consid-
erations: First, which attributes of the system are of most interest to us? For a model of plant growth,
this might include, for example, the rate of growth (mass accumulation) of a plant; the nutrient or energy
content of the growing plant; the effects of a group of plants on the surrounding environment, including
the temperature and CO2 content of the surrounding air, or the rate of erosion of the soil substrate; or the
resilience of the plant in drought conditions.

Second, there are attributes that may not be of particular intrinsic interest but may help in predicting
the behavior of those attributes that are of interest.

Returning to the falling-object model for a moment, if the primary object of interest in the real falling
object system is the height of the object at any given time, then there are certain things about the system
we may safely ignore: the color of the object or the time of day, for example, will probably have no bearing
on the trajectory of object’s motion. On the other hand, knowing the velocity of the object at any given
time is crucial to predicting its height over time, even if we may have no intrinsic interest in knowing the
velocity.

Other attributes that could have some bearing on the motion of the object are (to give a very few
examples)

• the size and shape of the object
• the mass of the object
• the air currents in the vicinity of the object’s path

But as the Italian experimenters of the 16th century demonstrated, the weight of a compact and relatively
dense object has little effect upon the rate at which it falls. It turns out, as a matter of fact, that the
predictive accuracy of our model, in which we look only at the height and downward velocity of the object
(and the ambient gravitational field) and ignore all other attributes of the system, is rather good in the case
of compact, relatively-dense objects.

3

Of course, if we consider a non-compact object with relatively low density, such as a feather, this model
may not do a good job of predicting its path as it falls through the air. We may find that in order to
accurately model the free-fall of a feather, we do need to include additional attributes in our system, such as
those that help us take into account the effects of air resistance. This process, whereby a model is compared
against observations and then updated when it fails to predict the behavior of the real system it is meant
to represent, is a key part of the scientific process and has been responsible for a great deal of progress
and understanding. Thus, it is never a problem when the process of abstraction has left out too many
details; instead this is an opportunity to learn more about the real world and the model. A central goal
for BioCro is to make it relatively easy to add new components to an existing model, allowing this type of
model development to occur more rapidly.

2 Continuous time versus discrete time

In the system just shown—a mathematical model of a real-world dynamical system—the differential equation
constraining the solution has an exact solution as an easily-computable function. Most often, however, we
will not be able to find an exact solution, and so we will have to settle for a numerical solution.

We will show how to model the falling-object system numerically, even though this is one case where we
don’t really need to resort to such methods.

2.1 Euler’s method

Euler’s method, the most basic of methods for numerical integration of ordinary differential equations, may
be applied to any system in which the current rate of change of each of the state variables may be expressed
as a function of the current state. Here, we use state variable to mean any quantifiable attribute of a system
whose value we would like to predict; the state of a system is then the conglomeration of the values of all of
these variables at any particular time. Euler’s method makes the assumption that, given a known state of
a system at some particular time, the state of the system at some very small interval of time later can be
closely approximated by assuming that the rate of change of each state variable remains essentially constant
over that very small time interval.

If s denotes the state, with s(𝑡) denoting its value at time 𝑡, and if 𝑥 is one of the state variables, with
𝑥(𝑡) denoting its value at time 𝑡, then, given

𝑑𝑥/𝑑𝑡 = 𝑓(s),
we assume that for any sufficiently small interval of time Δ𝑡,

𝑥(𝑡 + Δ𝑡) ≈ 𝑥(𝑡) + 𝑓(s(𝑡)) ⋅ Δ𝑡.

2.2 Applying Euler’s method to the falling-body problem

In the system of equations (1.1), ℎ is the only system variable. But there is no valid equation that gives
𝑑ℎ/𝑑𝑡 as a function of the state when the state is represented by ℎ alone.

To solve this problem, we will also consider the velocity to be a part of the state. If we think of the
state of a system as a record of the system at a particular time that can be used to predict a future state,
it makes sense that the velocity should be included. For example, if we know the position of an object but
we do not even know if it is moving upwards or downwards, we will not be able to predict its position in the
near future.

And so now, the states of our system have two components, height and velocity, and we can think of each
state s as a point in a 2-dimensional Euclidean space, that is,

s = (𝑠0, 𝑠1).

4

We will identify the height ℎ with the first component 𝑠0 and the velocity 𝑣 with the second component 𝑠1.
We will consider 𝑣 to be the velocity in the upward direction so that when the object is falling, 𝑣 < 0. We
write 𝑣(𝑡) to denote 𝑣 as a function of time.

Since 𝑣 = 𝑑ℎ/𝑑𝑡, we can rewrite the system (1.1) as

𝑑ℎ/𝑑𝑡 = 𝑣 (2.1)
𝑑𝑣/𝑑𝑡 = −𝑔 (2.2)

ℎ(0) = ℎ0
𝑣(0) = 0

Now we can use equations (2.1) and (2.2) to obtain the Euler method formulas for estimating the state at
time 𝑡 + Δ𝑡 from the state at time 𝑡:

ℎ(𝑡 + Δ𝑡) = ℎ(𝑡) + 𝑣(𝑡) ⋅ Δ𝑡
𝑣(𝑡 + Δ𝑡) = 𝑣(𝑡) − 𝑔 ⋅ Δ𝑡

Let us consider this system over some sequence of times 0 = 𝑡0, 𝑡1, 𝑡2, 𝑡3, … where for each 𝑖, 𝑡𝑖+1 = 𝑡𝑖 +Δ𝑡.
Further, let write 𝛿 for Δ𝑡, and let 𝜋0 and 𝜋1 denote the projection of the state s onto its components, that
is

𝜋0(s) = 𝑠0 (2.3)

and

𝜋1(s) = 𝑠1. (2.4)

Now we can write a recursive definition for the state s as a function of 𝑡:

s(𝑡0) = (ℎ0, 0)
s(𝑡𝑖+1) = (𝜋0(s(𝑡𝑖)) + 𝛿 ⋅ 𝜋1(s(𝑡𝑖)), 𝜋1(s(𝑡𝑖)) − 𝛿 ⋅ 𝑔) for i≥0. (2.5)

Note that we could also express this definition using our original variable names and without using the
projection operators:

s(𝑡0) = (ℎ0, 0)
s(𝑡𝑖+1) = (ℎ(𝑡𝑖) + Δ𝑡 ⋅ 𝑣(𝑡𝑖), 𝑣(𝑡𝑖) − Δ𝑡 ⋅ 𝑔) for i≥0.

Thus, Equation (2.5) may seem like a complicated way to write a relatively simple rule relating height,
velocity, and acceleration. This notation will, however, become useful later when we consider systems less in
terms a named state variables and instead think of these variables as coordinates of a point in a Euclidean
space comprising the system state space.

2.3 Note about abstraction and recursive systems

We have just performed the following abstraction to arrive at a recursively-defined function giving the state
of a system as a function of time:

real system
↓

continuous mathematical system (ODE system)
↓

discrete-time approximation (recursive equations)

5

One important point here is that the process of developing a recursive equation (or a discrete-time approx-
imation) depends on the algorithm chosen for solving the continuous ODE system. For example, if we had
chosen to use the fourth-order Runge-Kutta method rather than Euler’s method to solve the falling-body
problem, we would have arrived at a recursive definition different from Equation (2.5). Nevertheless, it
would represent the same continuous system, and should (usually) produce a similar sequence of states.

It should also be pointed out that not all discrete-time abstract dynamical systems arise as abstractions
of real systems or even as abstractions of continuous-time abstract systems.1

Consider, for example, a system with a state space Z2 consisting of all ordered pairs v = (𝑣0, 𝑣1) of
integers, and a transition rule

v(𝑡𝑖+1) = (𝜋1(v(𝑡𝑖)), 𝜋0(v(𝑡𝑖)) + 𝜋1(v(𝑡𝑖))).

Given an initial state v(𝑡0), we now have a way to compute the state v(𝑡𝑖) at any time 𝑡𝑖. This abstract
dynamical system may not have any relationship to any real dynamical system we might imagine, but it is
an abstract dynamical system nevertheless.

(If we take v(𝑡0) = (0, 1), by the way, the function 𝐹 ∶ N → Z defined by the rule

𝑖 ↦ 𝜋0(v(𝑡𝑖))

defines the Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, 13, … .)

Another class of discrete-time abstract dynamical systems are the cellular automata. These, however,
may have some value in modeling real-world phenomena. (See, for example, Deutsch (2005).)

3 An overview of some abstract dynamical system formulations

This section will provide a short survey of some formulations of abstract dynamical systems; in later sections,
we will discuss how these formulations relate to the types of systems represented in BioCro.

(For a insightful and thoroughly abstract mathematical study of the theory of general systems, dynamical
and otherwise, see Mesarović and Takahara (1975).)

3.1 Some notational preliminaries

As is common, we will take 𝑓 ∶ 𝐶 → 𝐵 to mean “𝑓 is a function with domain 𝐶 taking values in the set 𝐵.”
Usually, this means 𝑓(𝑐) is defined for every 𝑐 ∈ 𝐶, but in what follows, we won’t always be entirely strict
about this. Following Vaught (1985), we write 𝐵𝐶 to denote the set of all such functions 𝑓 .2 We use R,
Z, and N to denote the real numbers, the integers, and the natural numbers (the finite ordinals, including
zero), respectively. Z+ denotes the positive integers.

Following von Neumann, it will sometimes be convenient to identify each natural number 𝑛 with the
set of all of its predecessors. For example, 5 = {0, 1, 2, 3, 4}. This is particularly useful when speaking of
Euclidian spaces. For example, R3, Euclidean 3-space, is usually thought of as the set of all 3-coordinate
vectors (𝑥, 𝑦, 𝑧). But we can equally well consider it to be the set of all mappings 𝑣 ∶ {0, 1, 2} → R, which,
using the set-of-functions notation given above, can be denoted R{0,1,2}. (Or, using von Neumann’s notion
of ordinals, this, too, is denoted R3, since 3 = {0, 1, 2}!) Thus, we can identify a 3-tuple (𝑥, 𝑦, 𝑧) with a

1There are also cases where it is convenient to abstract directly from a (presumably continuous) real-world system to a
discrete mathematical model without passing through the intermediary stage of making an ODE-based model. We shall say
more about this in Section 4.

2This notation is meant to be suggestive of exponentiation. In fact, if 𝐵 and 𝐶 are both finite sets having cardinalities
‖𝐵‖ and ‖𝐶‖ respecively, then the cardinality ‖𝐵𝐶‖ of 𝐵𝐶 will be ‖𝐵‖‖𝐶‖. For example, if 𝐶 = {apple, pepper} and 𝐵 =
{red, yellow, green}, then there are ‖𝐵‖‖𝐶‖ = 32 = 9 possible mappings of the two food items to the three colors.

6

mapping 𝑣 ∶ {0, 1, 2} → R, where 𝑣(0) = 𝑥, 𝑣(1) = 𝑦, and 𝑣(2) = 𝑧. We often write 𝑣𝑖 in place of 𝑣(𝑖) and
identify a mapping 𝑣 ∶ {0, 1, 2, … , 𝑛−1} → R with an n-tuple or n-coordinate vector v = (𝑣0, 𝑣1, 𝑣2, … , 𝑣𝑛−1).

Often, however, there will be some level of indirection involved in our use of the notation 𝑣𝑖 for a
coordinate of v. For example, if U is a proper subspace of R𝑛 such that U = R𝑈 for some proper subset 𝑈
of 𝑛 = {0, 1, … , 𝑛 − 1}, then we may regard 𝑢𝑖 as the value taken by the 𝑖th member of 𝑈 in some arbitrary
but fixed ordering of the members of 𝑈 . We even allow the case where the function domain 𝑈 isn’t a set of
integers at all but just some finite collection of objects. In this case, in the context of considering vectors
(qua mappings) v ∈ R𝑈 , 𝑣𝑖 may denote alternately the 𝑖th member of 𝑈 in some fixed enumeration; the
name of a variable associated with that member; or the value of the 𝑖th coordinate of some particular vector
v. In the later case, 𝑣𝑖 doesn’t abbreviate 𝑣(𝑖) for some function 𝑣 ∈ R𝑈 . Rather, it stands for 𝑣(𝑢𝑖), where
𝑢𝑖 denotes “the 𝑖th member of 𝑈 .”

Any function 𝑓 ∶ 𝐶 → 𝐵 may be identified with the set {(𝑐, 𝑓(𝑐)) ∶ 𝑐 ∈ 𝐶}. Thus, the target set 𝐵 is not
an intrinsic part of the function 𝑓 . But, defining the image set of 𝑓 as

Im 𝑓 = {𝑏 ∶ there exists 𝑐 ∈ 𝐶 such that(𝑐, 𝑏) ∈ 𝑓},

we can at least say Im 𝑓 ⊆ 𝐵.

Given any function 𝑓 ∶ 𝐶 → 𝐵 and any subset 𝐶0 ⊆ 𝐶, we can define 𝑓|𝐶0, the restriction of 𝑓 to 𝐶0, as

𝑓|𝐶0 ∶= {(𝑐, 𝑏) ∈ 𝑓 ∶ 𝑐 ∈ 𝐶0}

We shall be particularly interested in restrictions of functions specifying points in Euclidean space. Suppose
x ∈ R𝑛, and let 𝑊 be an arbitrary subset of 𝑛 = {0, 1, 2, … , 𝑛 − 1}. Then x|𝑊 will be a member of R𝑊 ,
the set of functions that assign a real number to each member of 𝑊 . We regard R𝑊 as a subspace of R𝑛.
Moreover, if 𝑊 has 𝑘 members, R𝑊 will be isomorphic to, but not necessarily equal to, the Euclidean space
R𝑘. (R𝑊 and R𝑘 are equal iff 𝑊 = 𝑘 (that is, iff 𝑊 = {0, 1, … , 𝑘 − 1}).) We define the projection mapping
𝜋𝑛→𝑊 ∶ R𝑛 → R𝑊 by the rule

𝑣 ↦ 𝑣|𝑊.

More generally, given any two finite sets 𝑊 ⊆ 𝑈 (not necessarily sets of integers), we may define a
projection mapping 𝜋𝑈→𝑊 ∶ R𝑈 → R𝑊 by the rule

𝑣 ∈ R𝑈 ↦ 𝑣|𝑊.

Just as we can restrict the domain of a function, we can expand it as well.

Suppose we have two functions 𝑓 ∈ R𝑋 and 𝑔 ∈ R𝑌 , where either 𝑋 and 𝑌 are disjoint, or 𝑓(𝑧) = 𝑔(𝑧)
for all 𝑧 ∈ 𝑋 ∩ 𝑌 . We define the union 𝑓 ∪ 𝑔 of 𝑓 and 𝑔 by the rule

(𝑓 ∪ 𝑔)(𝑧) = {𝑓(𝑧) if 𝑧 ∈ 𝑋,
𝑔(𝑧) if 𝑧 ∈ 𝑌 −𝑋.

Note that this is exactly the same function as that we get by regarding functions as sets of ordered pairs
and then taking the literal (set) union of 𝑓 and 𝑔. Also, clearly,

𝑓 = (𝑓 ∪ 𝑔)|𝑋

and

𝑔 = (𝑓 ∪ 𝑔)|𝑌 .

Lastly, given any two sets 𝐴 and 𝐵, we define the Cartesian product of 𝐴 and 𝐵 to be a set of ordered
couples:

𝐴 × 𝐵 = {(𝑎, 𝑏) ∶ 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵}

7

If 𝐴 = R𝑋 and 𝐵 = R𝑌 with 𝑋 ∩ 𝑌 = ∅, then there is a natural isomorphism between R𝑋 × R𝑌 and R𝑋∪𝑌

given by
(x, y) ↦ x ∪ y.

(The inverse mapping is given by v ↦ (v|𝑋, v|𝑌) for v ∈ R𝑋∪𝑌 .) Where convenient and warranted, we will
consider R𝑋 × R𝑌 and R𝑋∪𝑌 identical.

The notion of Cartisean product can be extended to three or more sets. For example, since there is a
natural isomophism between (𝐴 × 𝐵) × 𝐶 and 𝐴 × (𝐵 × 𝐶), we can just write the product as 𝐴 × 𝐵 × 𝐶
and write its members as ordered triplets (𝑎, 𝑏, 𝑐) (instead of ((𝑎, 𝑏), 𝑐) or (𝑎, (𝑏, 𝑐)).

3.2 The Khalil model

The first model we consider is that described by Khalil (Khalil 2002). This model is both expressive and
flexible, and we believe it is the most intuitively natural way to view the sort of systems BioCro deals with
at the systems level (Section 4.2).

In the opening chapter, the author introduces dynamical systems as a finite collection of coupled first-
order ordinary differential equations

̇𝑥0 = 𝑓0(𝑡, 𝑥0, … , 𝑥𝑛−1, 𝑢0, … , 𝑢𝑝−1)
̇𝑥1 = 𝑓1(𝑡, 𝑥0, … , 𝑥𝑛−1, 𝑢0, … , 𝑢𝑝−1)

⋮
̇𝑥𝑛−1 = 𝑓𝑛−1(𝑡, 𝑥0, … , 𝑥𝑛−1, 𝑢0, … , 𝑢𝑝−1).

This is somewhat more general than the system we considered in Section 1.1 in that the derivatives
depend not only upon the state variables 𝑥0, 𝑥1, … , 𝑥𝑛−1, but also upon time 𝑡 and what Khalil refers to as
the input variables 𝑢0, 𝑢1, … , 𝑢𝑝−1.

Defining

x =
⎡
⎢
⎢
⎢
⎣

𝑥0
𝑥1
⋮
⋮

𝑥𝑛−1

⎤
⎥
⎥
⎥
⎦

, u =
⎡
⎢
⎢
⎢
⎣

𝑢0
𝑢1
⋮
⋮

𝑢𝑝−1

⎤
⎥
⎥
⎥
⎦

, f(𝑡, x, u) =
⎡
⎢
⎢
⎢
⎣

𝑓0(𝑡, x, u)
𝑓1(𝑡, x, u)

⋮
⋮

𝑓𝑛−1(𝑡, x, u)

⎤
⎥
⎥
⎥
⎦

, (3.1)

the state equation may be written more succinctly as the vector equation

ẋ = f(𝑡, x, u). (3.2)

(Note that Khalil actually uses 1-based indexing of vector coordinates in his exposition, so the vector x, for
example, is defined by

x =
⎡
⎢
⎢
⎢
⎣

𝑥1
𝑥2
⋮
⋮

𝑥𝑛

⎤
⎥
⎥
⎥
⎦

.

Here we use 0-based indexing instead in order to be consistent with other parts of this article.)

8

3.2.1 Variants of Khalil’s model

At this point, it is worth bringing up two restricted versions of the Khalil model.

The first is when equation (3.2) can be written as

ẋ = f(𝑡, x). (3.3)

Khalil refers to this as the unforced state equation: it lacks any explicit mention of inputs. But, he points
out, if the input can be specified as an explicit function of time,

u = 𝛾(𝑡), (3.4)

an explicit function of the state,

u = 𝛾(x), (3.5)

or an explicit function of both,

u = 𝛾(𝑡, x), (3.6)

then an equation of the form (3.2) can always be reduced to an equation of the form (3.3).

Khalil goes on to mention one particular special case of the class of systems described by equation (3.3):
namely, those that are autonomous or time-invariant. A system is autonomous if the function 𝑓 does not
depend explicitly on 𝑡, that is, if

ẋ = f(x). (3.7)

The behavior of an autonomous system is invariant to shifts in time origin. (Formally, however, as we shall
see later in Section 4.3, a non-autonomous system can be made into an automous one by introducing a
time-related variable into the state.)

The falling body system considered above was autonomous: the motion of the body will follow the same
pattern independent of when it is released. On the other hand, most realistic biological models tend to be
non-autonomous or time-varying. This is largely due to the influence of weather and other environmental
factors; for example, it matters whether seeds are sown in March or in May.

3.3 The Giunti-Mazzola model

The model due to Giunti and Mazzola is a further generalization of the autonomous version of the Khalil
model, though cast in a somewhat different form. Being autonomous, it is in some respects more restrictive
than the general model given in (3.2); but in other respects it is considerably more general.

We highlight this model for two reasons: First, it is mentioned in the supplementary materials to Lochocki
et al. (2022). Second, it generalizes the concept of time used for dynamical systems from the real numbers
(which the Khalil model assumes) to any monoid. In particular, we may consider time domains consisting
of the non-negative integers, or some fixed multiple of the same, such as the non-negative even integers.
This is one of the natural ways to view time in discrete-time systems, which often arise in practice because
continuous-time systems are discretized when applying numeric solution methods (Section 2).

We quote Giunti and Mazzola’s definition of a dynamical system verbatim (Definition 1 in Giunti and
Mazzola (2012)):

𝐷𝑆𝐿 is a dynamical system on 𝐿 iff 𝐷𝑆𝐿 is a pair (𝑀, (𝑔𝑡)𝑡∈𝑇) and 𝐿 is a pair (𝑇 , +) such that

(i) 𝐿 = (𝑇 , +) is a monoid. Any 𝑡 ∈ 𝑇 is called a duration of the system, 𝑇 is called its time
set, and 𝐿 its time model;

9

(ii) 𝑀 is a non-empty set. Any 𝑥 ∈ 𝑀 is called a state of the system, and 𝑀 is called its state
space;

(iii) (𝑔𝑡)𝑡∈𝑇 is a family indexed by 𝑇 of functions from 𝑀 to 𝑀 . For any 𝑡 ∈ 𝑇 , the function 𝑔𝑡

is called the state transition of duration 𝑡 (briefly, 𝑡-transition, or 𝑡-advance) of the system;
(iv) for any 𝑣, 𝑡 ∈ 𝑇 , for any 𝑥 ∈ 𝑀 ,

(a) 𝑔0(𝑥) = 𝑥, where 0 is the unity of 𝐿;
(b) 𝑔𝑣+𝑡(𝑥) = 𝑔𝑣(𝑔𝑡(𝑥)).

Notice that not only can the time model now be any monoid, the state space can now be any non-empty
set: it is no longer required to be a subset of a Euclidean space. It needn’t even be a continuum! A fortiori,
there is no longer any requirement that the state transitions be differential equation based.

Instead of differential equations, we have condition (iv.b), sometimes called the semi-group property,
which relates the structure of the time model to that of the class of state transitions. Just as 𝑇 is a monoid
with operation + and additive identity 0, so too is the collection (𝑔𝑡)𝑡∈𝑇 of state transitions, with the monoid
operation being function composition and the identity element being the identity function. Condition (iv)
asserts that the mapping from (𝑇 , +) to ((𝑔𝑡)𝑡∈𝑇 , ∘) whereby 𝑡 ↦ 𝑔𝑡 is a monoid homomorphism.

Condition (iv) is in fact the crux of this definition of a dynamical system. Without it, there is no structure
to the way in which such a system evolves: the system may pass from one state to the next willy-nilly without
any constraint on the relationship between states over time.

3.4 The Barreira-Valls model

We briefly mention one further model for the discrete time case, mainly because the formulation is the
epitome of simplicity. Definition 1.1 in Barreira (2019) states simply

A map 𝑓 ∶ X → X is called a dynamical system with discrete time.

The definition goes on to define higher-order mappings:

We define recursively

𝑓𝑛 = 𝑓 ∘ 𝑓𝑛−1

for each 𝑛 ∈ Z+, with the convention that 𝑓0 = id. When 𝑓 is invertible, we also define
𝑓−𝑛 = (𝑓−1)𝑛 for each 𝑛 ∈ Z+.

This is entirely homologous to the Giunti-Mazzola model for the case where the monoid chosen for the time
model is either Z or N.

Note that the recursion equation (2.5) derived from applying Euler’s method to the falling body problem
fits nicely into this model: take X to be Euclidean 2-space and the function 𝑓 to be defined by the rule

(𝑥, 𝑦) ↦ (𝑥 + 𝛿𝑦, 𝑦 − 𝛿𝑔).

(Barreira and Valls go on to define “a dynamical system with continuous time” (Barreira 2019, Definition
1.7) in precisely the same way as Giunti and Mazzola (for the case where the time model is R or R≥0)—that
is, as a family of mappings indexed by time satisfying the semi-group property.)

10

4 The BioCro model

A BioCro system is determined by the specification of five entities:

1. A set of initial values
2. A set of (constant) parameter values
3. A set of drivers
4. A set of direct modules
5. A set of differential modules

These five entities tell us everything about the dynamics of the system that we need in order to “solve” it.
(How, precisely, it will be solved is determined by specifying a solver.)3

Aside from differences in the concept of state (Section 4.4), the Khalil model fits very well with an
idealized version of the BioCro model in which time is considered to be continuous.4 We will see this in the
section 4.2, where we discuss the two models side-by-side. But first, we must elaborate a bit further on the
Khalil model.

4.1 Elaboration on the Khalil model

Recall that the Khalil model expresses the derivative 𝑑x/𝑑𝑡 of the state as a function of time 𝑡, the state x,
and the input u:

ẋ = f(𝑡, x, u).

Let us denote the domains of x and u (vis-à-vis the function f) by X and U. X and U are vector spaces
over the reals, and following the conventions set out in Section 3.1, we may view them as sets of mappings
from finite index sets into the reals. Thus

X = R𝑋 (4.1)

and

U = R𝑈 (4.2)

for some finite sets 𝑋 and 𝑈 , where we assume 𝑋 and 𝑈 are disjoint.5

Furthermore, recall that in the Khalil model, the value of u may given by some function of time and/or
the state:

u = 𝛾(𝑡),
u = 𝛾(x),

3A less rigorous but much more succinct overview of the BioCro model is given in Appendix 2 of Lochocki et al. (2022).
4There are rare cases where a BioCro model uses a module corresponding to a difference equation rather than a differential

equation. Such models assume discrete time steps and are not naturally viewed as simply discretizations of systems of ordinary
differential equations. They correspond to a variant of the Khalil model in which the state equation (Equation (3.2)) has been
replaced with the difference equation Δx = f(𝑡, x, u). Since these modules are rare, and since we hope to eventually phase them
out of the standard BioCro module library, we won’t consider such modules further.

5If ‖𝑋‖ = 𝑛 and ‖𝑈‖ = 𝑝, then R𝑋 is isomorphic to the Euclidean space R𝑛 and R𝑈 is isomorphic to R𝑝. In many contexts,
we could just go ahead and consider them not just isomorphic but identical. But here we want to be more careful because we
want to be able to simultaneously consider functions into R having non-overlapping domains.

Note that in practice, in a model of a real-world system, f may not be defined for all x ∈ X and all u ∈ U. A coordinate
corresponding to temperature in degrees Kelvin, for example, can not meaningfully take on values less than zero. In general,
however, f will be defined for all x ∈ X′ and all u ∈ U′ where X′ and U′ are connected subsets of X and U. We will reconsider
this issue in Section 4.4.3.

11

or

u = 𝛾(𝑡, x).
Thinking in terms of the individual components of u, each component 𝑢𝑖 of u can be expressed as a function
𝛾𝑖 of 𝑡 or x or both:

𝑢𝑖 = 𝛾𝑖(𝑡),
𝑢𝑖 = 𝛾𝑖(x),

or

𝑢𝑖 = 𝛾𝑖(𝑡, x).
It is also possible that some 𝑢𝑖 doesn’t actually depend on either time or state, that it is in fact constant:

𝑢𝑖 = 𝑘 for some 𝑘 ∈ R. (4.3)

We can, in fact, partition the variables 𝑢0, 𝑢1, … , 𝑢𝑝−1 comprising the varying input u into three groups:

1. Let 𝑢𝑖 be in group 𝐾 if the value of 𝑢𝑖 depends on neither 𝑡 nor x; that is, it always has the same
value, no matter what the state or the time.

2. Let 𝑢𝑖 be in group 𝐷 if the value of 𝑢𝑖 depends on 𝑡 alone.

3. Let 𝑢𝑖 be in group 𝑊 otherwise, that is if the value of 𝑢𝑖 depends on the value of x (and possibly also
on 𝑡).

Thus 𝑈 = 𝐾 ∪ 𝐷 ∪ 𝑊 , where 𝐾, 𝐷, and 𝑊 are pairwise disjoint. This allows us to partition the vector
space U into corresponding sub-vector spaces K, D, and W; that is,

U = K × D × W,
where K = R𝐾, D = R𝐷, and W = R𝑊 . Each input u may now be written as a triplet (k, d, w) where
k ∈ K, d ∈ D, and w ∈ W.6 Moreover, there exist functions 𝛾D ∶ 𝑇 → D and 𝛾W ∶ 𝑇 × X → W and a
constant function 𝛾K with codomain K such that

k = 𝛾K(), (4.4)
d = 𝛾D(𝑡), (4.5)

and

w = 𝛾W(𝑡, x) (4.6)

at any moment in the life of the system.
Since u = (k, d, w), we can rewrite the state equation (3.2) as

ẋ = f(𝑡, x, k, d, w). (4.7)

But using equations (4.4), (4.5), and (4.6), we can eliminate k, d, and w to get f as a function of 𝑡 and x
alone:

ẋ = f(𝑡, x, 𝛾K(), 𝛾D(𝑡), 𝛾W(𝑡, x)). (4.8)
In other words,

ẋ = f ∗(𝑡, x) (4.9)
for some suitable function f ∗, so that we have now an unforced state equation as in equation (3.3).

6Note that any (or all!) of the sets 𝐾, 𝐷, or 𝑊 may be empty, in which case the corresponding vector space is zero
dimensional and the corresponding vector argument can be eliminated from equation (4.7). (If all three sets are empty, then of
course we have no inputs and the system is automatically described by the unforced state equation (3.3).)

12

4.2 BioCro viewed in terms of the Khalil model

In BioCro, as noted above, a system is determined when we specify its initial values, parameters, drivers,
direct modules, and differential modules. How do these relate to the version of the Khalil model just discussed?

• The initial values correspond to the state x at some initial time 𝑡0, which for convenience, we will
always take to be 0. (Thus time is always the amount of time that has elapsed since the start of
the simulation.) We will denote this initial state as x0 = (𝑥0,0, 𝑥1,0, … , 𝑥𝑛−1,0). In BioCro, the state
variables are referred to as differential quantities, since they evolve according to differential equations. It
is the initial values specification that determines which variables comprise the state, and the dimension
of the state space X is equal to the number of variables in x0.

For now, we shall consider the initial values as part of the definition of a system only in so far as they
determine the set of variables comprising the state space for the system. The specification of what values
these variables have at time 𝑡0 will be considered to be something associated with a particular run of a
system and not something inherent in the system itself. This will make comparison with the Khalil and
Giunti models easier, since those models don’t specify anything analogous to an initial state.

In what follows, when we need to make this distinction, we shall refer to a dynamical system together
with a specified initial state as a run of a system. It should also be noted, as discussed in Section 2, that
actually running the system (that is, allowing the state to evolve from its initial values) requires the use
of numerical methods that effectively discretize the continous system of differential equations of a Khalil
system. Whether we consider this as the development of a new discrete dynamical system from a continuous
one or just a matter of practical convenience is mostly matter of perspective.

• The parameters correspond to the sole value in the codomain of the constant function 𝛾K. This will
be a 𝑞-tuple of values k = (𝑘0, 𝑘1, … , 𝑘𝑞−1), where 𝑞 is the number of parameters, the dimension of the
vector subspace K.

• The drivers correspond to the function 𝛾D ∶ 𝑇 → R𝑟, giving the value of d as a function of time.
Writing d as (𝑑0, 𝑑1, … , 𝑑𝑟−1), where 𝑟 is the number of driver variables (the dimension of D), we can
decompose 𝛾D(𝑡) into scalar-valued functions 𝛾D

0 (𝑡), 𝛾D
1 (𝑡), …, 𝛾D

𝑟−1(𝑡).

It should be noted that the driver functions 𝛾D
𝑖 are rarely functions that can easily be specified by and

computed from some formula. In example shown in Appendix 1 of Lochocki et al. (2022), the function
giving the value of the driver variable 𝑄 corresponding to photosynthetic photon flux density is based on
the function

𝑄 = sin(𝑡
12 ⋅ 3600𝜋) ⋅ 2000 × 10−6. (4.10)

Here, 𝑡 is meant to represent the elapsed time in seconds, and in this example, the actual values fed into
the BioCro system constructor are only the values of 𝑄 for a set of integral values of 𝑡, namely, 𝑡 =
0, 1, 2, … , 43200. As acknowledged in the appendix, this is a highly artificial example.

13

Usually, a driver variable function can only be defined via an equation7 of the form

𝛾D
𝑖 (𝑡) =

⎧{{{{{{{{
⎨{{{{{{{{⎩

0.046 if 𝑡 = 𝑡0,
0.023 if 𝑡 = 𝑡1,
…
…
1151.541 if 𝑡 = 𝑡4000,
747.040 if 𝑡 = 𝑡4001,
…
…
0.621 if 𝑡 = 𝑡8758,
0.874 if 𝑡 = 𝑡8759.

(4.11)

Here, 𝑡0, 𝑡1, … , 𝑡8759 is a sequence of times representing the amount of time elapsed since the beginning of the
simulation, with 𝑡0 = 0, and for some fixed positive value Δ𝑡, 𝑡𝑗+1 = 𝑡𝑗 + Δ𝑡 for 0 ≤ 𝑗 < 8759. In practice,
in BioCro, this equation is usually specified implicitly via an R data frame: 𝛾D

𝑖 corresponds to some column
of the data frame, and the value of that column in row 𝑗 is that value for 𝛾D

𝑖 at time 𝑡𝑗−1.

(For some numerical methods, we need to know values of 𝛾D
𝑖 (𝑡) for values of 𝑡 between the time points

given in this definition. In principle, many approaches are available for this type of interpolation, such as
cubic splines. At the moment, BioCro only offers linear interpolation between neighboring time points. In
other words, an additional case is added to the above rule:

𝛾D
𝑖 (𝑡) = 𝑡𝑗+1 − 𝑡

Δ𝑡 𝛾D
𝑖 (𝑡𝑗) + 𝑡 − 𝑡𝑗

Δ𝑡 𝛾D
𝑖 (𝑡𝑗+1) if 𝑡𝑗 < 𝑡 < 𝑡𝑗+1 (4.12)

This makes 𝛾D
𝑖 (𝑡) into a piecewise-linear continuous function.)

Now to the modules. As we will show later (Section 4.5), any BioCro system is equivalent to a BioCro
system having only a single module of each type, but having the same initial values, parameters, and drivers.8
Thus, for simplicity, we will here consider only the case where there is a single module of each type.9 Later,
we will consider how a single module may be broken up into multiple modules (Section 4.5).

• The direct module corresponds to the function 𝛾W ∶ 𝑇 × X → W. In point of fact, we usually think of
the direct module as corresponding to a function ∗𝛾W ∶ X × K × D → W, but using equations (4.4)
and (4.5) and substituting, we can derive a function 𝛾W that gives the value of w as a function of 𝑡
and x alone.
Note in particular that the number of output variables of this direct module gives the dimension of the
W component of U. We call these variables the direct quantities of the system (for lack of a better
term) since they are the outputs of the direct module.

Two observations should be made here.

First, in the general case, where multiple direct modules ℳ1, ℳ2, … are used in the construction of our
system, some of those modules may depend on the outputs of other direct modules. In this case, each module
ℳ𝑖 corresponds to a function of the form

𝛾W𝑖 ∶ X × K × D × W𝑖 → W𝑖, (4.13)
7This particular function is, in fact, the function you would get if you expressed the total PAR flux density (in 𝜇mol/𝑚2/𝑠)

measured at the Earth’s surface in Champaign, Illinois (per the weather data set accompanying BioCro) as a function (taking
𝑡𝑖 = 𝑖) of the number of hours elapsed since midnight on January 1, 2005.

8This isn’t to say the requisite modules exist. In order to realize this replacement, the user may have to write them!
9As an alternative to confining the discussion here to the case where there is only a single module of each type, we could

instead make no stipulation about the number of modules and simply substitute the phrase “the direct (differential) module
component” in every place where we speak of “the direct (differential) module”.

14

where W𝑖 is the subspace of W generated by the variables in the output of module ℳ𝑖 and W𝑖 is the
subspace of W generated by those inputs to module ℳ𝑖 that are not in 𝑋, 𝐾, or 𝐷. (A direct module’s
inputs and outputs are required to be disjoint. Thus W𝑖 is complementary to W𝑖, with W𝑖 ×W𝑖 a subspace
of W.) We will discuss this further in the section on modularization (Section 4.5).

Second, it should be mentioned that the Khalil model allows for the inclusion of an output function

y = h(𝑡, x, u). (4.14)

Khalil says that this output vector y “comprises variables of particular interest in the analysis of dynamical
systems ….” In the Khalil model, these variables, unlike the variables that comprise u, are not a part of the
state equation. They are there for informational purposes only.

The closest analogue to these variables in BioCro are those variables that are outputs of the direct module
of the system but are not inputs to the differential module. An example of such variables in the BioCro
library are the kinetic energy, spring energy, and total energy outputs of the harmonic energy module (class
harmonic_energy). These exist only to give information about the system using this module since (at least
of this writing) there are no existing modules that use these as inputs.

• The differential module corresponds to the function f in equation (4.7). This is the Khalil state equation,
but with u divided into components k, d, and w. The primary constraint on the differential module
is that its output variables must all be differential quantities (or, equivalently, state variables), which
are determined by the initial values specification as discussed above.
(BioCro doesn’t require that all state variables be included in the differential module outputs: if some
state variable 𝑥𝑖 is not, it is assumed that ̇𝑥𝑖 = 0; that is, that component of the state remains constant
throughout the life of the system.)

4.3 BioCro’s concept of time

In the C++ interface to the BioCro library, there is only one required user-facing time-related variable—
namely, the quantity timestep, which must be provided as one (and possibly the only) of the parameters
when setting up a system.10 (In the R interface, there are always three additional quantities—doy, hour,
and time—which always come into play when we set up or run a system. These are artifacts of certain
aspects of the R interface and are subject to revision, and we will mostly ignore them here.)

The timestep quantity, however, gives rise to an implicit quantity, the elapsed time, that corresponds
well with the time variable as used in the Khalil and the Giuli-Mazzola models.11 timestep, in fact, denotes
the amount of time that elapses between successive values of any of the driver variables.12

Time often shows up explicitly in a BioCro system in the form of a specific date and time, and what the
value of some driver variable was at that date and time; for example, from the information in the drivers
parameter we may able to make assertions such as the temperature at 3 p.m. on April 15, 2005 was 20.5°C. But

10The timestep parameter is different in character from the other parameters that make up part of the specification of a
BioCro system. It does not correspond to a physical attribute of the real dynamical system being modeled. Rather, it is an
artifact of the way in which the real system is modeled mathematically. In fact, it should not be included in the parameters at
all and is only there due to a “historical accident.” Eventually, it is intended that timestep will be removed from the BioCro
parameters. As such, we don’t consider it as one of the variables in the set 𝐾 that we introduced in Section 4.1.

11We shall henceforth refer to the model from Giunti and Mazzola (2012) presented in Section 3.3 as simply the Giunti
model: it is essentially the same model presented fifteen years earlier in Giunti (1997), but generalized to an arbitrary monoid,
a generalization we have no need to make use of in BioCro. (This is not entirely true: whereas Giunti (1997) only considers
time systems consisting of the integers, the rationals, the reals, or the non-negative members of the same, we allow time systems
isomorphic to, but not identical to, the non-negative integers, such as the set of non-negative even integers. But our time
systems will always be commutative and linearly ordered: we have no need to consider arbitrary monoids, such as time systems
that correspond to cyclic groups, arbitrary n-dimensional vector spaces, or the quaternions under multiplication.)

12We could make elapsed time an explicit quantity in our systems by writing a differential module with no inputs, one that
always returns the value 1 for its one output variable elapsed_time. Then, assuming we give it the initial value zero, its value at
any time will represent the amount of time that has elapsed since the start of the simulation, in whatever time units timestep
is in.

15

“3 p.m. on April 15, 2005” is not the sort of time with which the Giunti model deals. Times—durations—in
the Giunti model are members of a monoid, which we can add together to get another time in the monoid.
But we can not add 3 p.m. on April 15, 2005 and 7 a.m. on September 22, 2021 in any meaningful way to get
some other date-time. We can, however, add durations: we can, for example, look at the state of a system
one hour after the initial state of that system, and then look at the state two hours later, and the second
observation will be three hours after the time corresponding to the system’s initial state (since 2 + 1 = 3).

As hinted above, the timestep quantity generates a monoid: if the value of timestep is 𝛿, then the
members of that monoid are 0, 𝛿, 𝛿 + 𝛿, 𝛿 + 𝛿 + 𝛿, 𝛿 + 𝛿 + 𝛿 + 𝛿, …, ad infinitum.

Of course, in BioCro, we don’t let our system simulations run forever, so the set of times dealt with in
any given run of a system doesn’t really quite form a monoid because if we add 𝛿 to the final time point in
our simulation, we get a time that is outside the domain of our simulation. Conceptually, we can deal with
this problem (of reconciling BioCro’s concept of time with that of the Giunti model) by imagining that our
system simulations could run forever if we let them (and if we had knowledge infinitely far into the future of
any driver variables we happened to be using); we imagine that we could do this but that instead, we choose
to look at the behavior of the system only over some finite period of time.

4.4 BioCro’s concept of state

In BioCro, at the level of a module, all input quantities are considered uniformly. There are good reasons
for this, reasons that go beyond mere programmatic convenience. For example, the input to some module
might in one system be determined mechanistically as the output of some other module; but in a different
system, it might come from data observations and thereby be one of the drivers. But the module using that
input doesn’t care where it comes from.

Once we set up a system, however, each quantity falls neatly into one of four categories: it is either
a parameter, a driver, a differential quantity, or a direct quantity. (These correspond, respectively, to the
subspaces K, D, X, and W discussed in Sections 4.1 and 4.2 and to the arguments k, d, x, and w in the
state equation in the form given in equation (4.7).)

The uniform treatment of quantities at the module level is reflected in the C++ code used to implement
BioCro simulations: each quantity used in a given system is incorporated into a C++ structure of a user-
defined type called state_map, which maps names of quantities to the value such quantities have at some
particular time. This naturally leads to referring to the aggregate of the values of all quantities of the
system at some particular point in time as the state of the system at that time. Thus, while Khalil’s model
distinguishes betwee the state and the inputs, the term state as used in BioCro refers to the parameters,
drivers, differential quantities, and direct quantities as a whole (equivalent to Khalil’s state and drivers).

This section attempts to reconcile this conception of state with that commonly used in dynamical systems
theory, and in particular, with the formulations presented in chapter 3. Elsewhere in this document, we use
the term state exclusively in reference to its usual definition as employed in the Khalil, Giuli-Mazzola, and
Barreira-Valls models. When discussing BioCro, we refer to the state variables as the differential quantities
to avoid misrepresenting BioCro’s idea of state. In this section, however, we must necessarily use state to
refer to both conceptions, and we will try to clarify which definition is meant whenever it is unclear from
context.

4.4.1 BioCro state and the Khalil model

Khalil remarks that the state variables “represent the memory that the dynamical system has of its past.” As
Laplace (Dale 1995) remarks, “We ought then to consider the present state of the universe as the effect of its
previous state and as the cause of that which is to follow.” The inputs in the model, on the other hand, are
in general completely arbitrary. They are not determined by the state or by their own past or future values.
They help determine, but are not determined by, the evolution of the state of the system. In a sense, they are

16

like the hand of the experimenter-god touching and influencing this otherwise mechanistically-determined
system.

In BioCro, the inputs are considered part of the state, partly as a matter of convenience; but, convenience
aside, there is also a philosophical justification for this: In many systems, the inputs may clearly be thought
of as somehow external to the system. When studying an electrical circuit, for example, the experimenter
may apply electrical inputs to the system and see how the system responds. Even in a controlled plant-
growth experiment conducted in a climate-controlled greenhouse, the environmental inputs may be applied
somewhat arbitrarily. In BioCro, by contrast, the inputs (the drivers) are usually related to weather and other
aspects of the environment—temperature, humidity, radiation, and so on. Unlike in a controlled experiment,
these environmental variables evolve according to their own laws; they are not under the control of the
experimenter. In a truly comprehensive model, their laws of evolution would be included right alongside
the laws determining plant growth. But generally, to do so would overly complicate the model, and by and
large, given the inherently chaotic nature of meteorological processes and the vast amounts of additional
data that would be required, it is not at all feasible to do so. So in BioCro, we regard them as a part of the
system—as part of the state of the system—but as a part that is taken as given rather than as a part that
is to be derived from some general rules governing the evolution of natural systems.

None of this is to say, of course, that BioCro can’t also be used to model controlled experiments, such as
those carried out in a greenhouse; or to model “thought experiments” or “what if” scenarios: What would
happen if we used the weather data from 2005 but assumed a much higher CO2 concentration?

4.4.2 BioCro state and the Giunti model

Giunti and Mazzola’s model definition was cited in the supplementary materials to Lochocki et al. (2022)
as justification for considering all quantities involved in a system (except for time) as part of the state.
Whatever the merits of that argument, in retrospect, this possibly amounts to a sort of cherry-picking of the
Giunti-Mazzola definition because it is not altogether clear whether BioCro dynamical systems, as envisioned
in that paper, have, in general, a collection of well-defined transition functions (𝑔𝑡)𝑡∈𝑇 . Whether they do or
do not turns on the question of how we interpret the stipulation, given in the supplement, that “the term
state is used to refer to all quantities involved in the system, except time.”

As we demonstrate here, a BioCro system having drivers but that does not include a time-like variable
amongst those drivers does not, in general, conform to the Giunti model.

To see this, let us consider a typical BioCro system in which the driver component consists of the values
of a number of weather-related variables over the course of a year, and suppose these variables happen to
all have the same values at two different times; for example, suppose the weather at 1 p.m. on April 12,
2008 is exactly the same as the weather at 3 p.m. on May 16, 2008 to the extent weather is captured by
the attributes in our model. Moreover, suppose our system has what might be a typical array of differential
variables—namely, those that describe the state of growth of a plant that is subjected to the environment
described by the driver variables in the system.

Consider now two identical states—one, 𝑠1, corresponding to a seedling planted at 1 p.m. on April 12,
2008, and one, 𝑠2, corresponding to an identical seedling planted at 3 p.m. on May 16, 2008. The states are
identical because the attributes of the seedlings, described by the differential variables, are identical, and the
attributes of the weather, described by the driver variables, are also identical; and because the parameters
(being constant) are identical, and the values of the “direct” variables, being functions of the other three
components, are also identical. (Recall that we are specifically excluding date and time from our notion of
state here.) In other words, 𝑠1 = 𝑠2.

Now consider one of the transition functions 𝑔𝑡—say, for example, some function 𝑔𝑢, where 𝑢 corresponds
to a duration of 30 days. Then 𝑔𝑢(𝑠1) will be the state corresponding the the attributes of the seedling
planted on April 12 and its environment one month later, on May 12, 2008. And 𝑔𝑢(𝑠2) will be the state
corresponding the the attributes of the seedling planted on May 16 and its environment approximately one
month later, on June 15. Will the weather at 1 p.m. on May 12, 2008 be identical to that at 3 p.m. on June

17

15, 2008? According to the Giunti model, it should be, since 𝑠1 = 𝑠2 implies that state 𝑔𝑢(𝑠1) equals state
𝑔𝑢(𝑠2); and if two states are equal, those components of the state that describe the weather should be equal
as well.

But we know that something is wrong here, because even if the same weather occurs at two different
times, we can’t expect the weather patterns going forward to develop in the same way. Moreover, in all
likelyhood the identical seedlings planted on April 12 and May 16 will no longer be identical 30 days later
because they likely will have been subjected to different weather conditions.

There are two ways (at least) out of this predicament. One is to ensure that the driver component of
the state never repeats itself. Any monotonically-increasing driver variable would do the trick, but the most
natural way of ensuring no repetitions is probably to include some representation of the time, such as the
calendar date and time, Julian date, reduced Julian date, or Unix time as part of the driver component of
the state. (The R interface to BioCro in fact requires either both the day-of-year and hour of the day as
driver variables or it requires a monotonically-increasing variable called time. The C++ interface, however,
requires neither of these.)

A second way, one that makes the system formally time-independent, is to modify the driver component
in our notion of the state. In this scheme, the driver component of a state is not just an array of values the
driver variables happen to have at some particular time. Now, instead, it is an encapsulation of the future of
the driver variable values indefinitely far into the future. One way to imagine this, if we are thinking of the
drivers as corresponding to the weather, is to think of the driver component of the state at some particular
time as a weather prediction giving the weather at that time and for every future time, i.e., the weather one
day from now, two days from now, and so on; moreover, not just any prediction, but a 100% accurate one.
The state now, without having to include the date or time, encapsulates all the information we need to have
in order to know what the state will be 𝑥 amount of time in the future.

We bring this up to show that even in the presence of drivers (inputs, in Khalil’s terminology), the notion
of an autonomous system is possible. And we can have systems that conform to the Giunti model without
requiring that states on different dates be distinct. For example, imagine a greenhouse experiment in which
the climate conditions in the greenhouse repeat exactly the same pattern from one day to the next. In this
system, the driver state at noon—the “weather” prediction for each moment going forward (one hour later,
10 hours later, 10 days later)—will be exactly the same from one day to the next. And so too will the
evolution of a generic seedling: the evolution of a seedling planted at noon on one day will be the same as
the evolution of an identical seedling planted at noon twenty days later.

In practical terms, however, this is a rather complicated model. The state space will no longer be a
Euclidean space, since D, the driver component of the state space, will no longer be the Euclidean space R𝑟

but will instead be the set (R𝑟)𝑇 of all functions 𝛾D ∶ 𝑇 → R𝑟. (Note that the state transition of duration 𝑢
restricted to the D component of the state is at least easily defined: if 𝛾 is the D component of some state
s, then 𝑔𝑢(𝛾) will be the function defined by the rule 𝑡 ↦ 𝛾(𝑢 + 𝑡).)

The upshot is that the Giunti model does not naturally describe a BioCro system having drivers unless
some proxy for time is allowed to be a component of those drivers. It should also be noted that BioCro does
not make use of two important generalizations in the Giunti model: in BioCro, the state space always will be
a subset (in fact, a connected subset) of a Euclidean space, and state transitions (using state in Khalil’s sense)
will always be differential equation based. Thus, we find that Khalil’s model provides a better description
of BioCro systems.

4.4.3 The state space as a manifold

One of the arguments given in the supplementary materials to Lochocki et al. (2022) for considering all
variables as state variables is that “the division between state and auxiliary variables is arbitrary.” Whether
or not this is a compelling argument for considering “all quantities equal”, this statement is, at least on a
formal level, largely true, at least in the case where variables mutually determine one another. As stated at
the conclusion of Appendix II in Mesarović and Takahara (1975),

18

The starting point for any modeling is the observations and the assumption about the existence
of relationships between them. The primary concept of a system ought to be definable just with
that much data. Whether such a relationship can be described as a transition in a state space
is a point that needs to be proven. Even if this is possible, a state space is not unique, which
indicates the secondary nature of the concept of state [emphasis mine].

Here, the authors are presumably using state in the less comprehensive sense, where it is distinguished
from system inputs and outputs, though conceivably they could simply mean that which attributes we choose
to observe and codify into a notion of state is not unique; but for the sake of argument, we’ll assume they
mean at least the former.

(But the authors, in fact, hint at an altogether different view of what is meant by the state of a system.
In this view, everything that can be observed about a system is encompassed by the system’s inputs and
outputs: the system is essentially a black box, and how it responds to given inputs at any particular time
is not always the same. This is because some unobservable aspects of the system come into play. These
unobservables constitute the state of the system, and how it responds at any given time to given inputs
depends on what state it happens to be in. A helpful analogy here might be the notion of a person’s state
of mind as a determinant of how they might react to a particular event.)

However expansive we choose to make our notion of state, one thing is clear: if we choose to regard the
parameters, drivers, and the relationship between quantities embodied in the direct modules as constraints
on the state space of our systems, then given that a state lies in this state space, we can fully specify the state
using only the values of the so-called differential variables (plus time); the values of all of the other quantities
can be determined from these. Thus, if the total number of quantites in the system (including time) is 𝑛, and
the number of differential variables is 𝑘, then the state space may be viewed as a 𝑘 + 1-dimensional manifold
embedded in Euclidean 𝑛-space R𝑛. Put another way, no matter how many variables we use to describe the
state of the system, there are still only 𝑘 + 1 degrees of freedom: the parameters can only take one value,
the time variable determines the values of all the driver variables, and the values of these together with the
values of the differential variables determine the values of the remaining variables, the direct variables.

An analogy may help make this clearer: Say we wish to consider all points on earth. If we don’t limit
ourselves to points on the surface, then we could specify such points with three coordinates—longitude,
latitude, and altitude. Large values of altitude will correspond to points above the earth’s surface, and
negative values will usually correspond to points in the earth’s interior. We are considering arbitrary points
in a three-dimensional space, and so it makes sense that we need all three coordinates to fully specify such
a point.

But suppose we now say that we only want to consider points on the earth’s surface. Given this constraint,
this understanding that we are only going to try to describe points on the surface of the earth, we can get by
with only two coordinates: we need only specify the longitude and the latitude. We could include the third
number, the altitude, as well (provided we know it), but it is now not necessary, because it is understood
that the point lies on the earth’s surface. If we consider a system whose state comprises the location of
some given object on the surface of the earth, then the state space is that surface, a two-dimensional space
embedded in Euclidean 3-space.

Note that in this example, it matters which two coordinates we choose for describing states. Generally, it
will not, for example, suffice to know only the altitude and the longitude, since, given some choice of altitude
and longitude, there may be many points of various latitudes that match. (There are exceptional cases, of
course: if we specify the altitude as 8848.86 (meters), even without having specified a longitude or latitude
(let alone both), we know the object is at the top of Mount Everest.13)

13Here, we are using altitude to mean “height above sea level”, or what is, for points on the earth’s surface, usually called
elevation.

19

4.5 Modularization in BioCro

As mentioned in Section 4.2, any BioCro system can be replaced by an equivalent system using only a single
module of each type. We merely have to write one direct module and one differential module, where each
(respectively) combines the effects of all the individual direct and differential modules that were used in the
original system.

We use “merely” advisedly here, because one of the main strengths of BioCro is the ability to modularize,
so that once we have a wide repertoire of modules to choose from, we can choose and combine them in
whatever way is useful, without having to write a new module each time we want to tweak some aspect of
the system as a whole.

In this section, we look at this combining of modules on a formal level, delineating the requirements for
using two or more modules in place of one and the effects of doing so. We start with the differential module
case since it is the simpler of the two.

4.5.1 Modularization of the derivative function

As mentioned in Section 4.2, when a BioCro system uses only a single differential module, that module
corresponds to the function f in Khalil state equation (4.7). We shall henceforth refer to f as the derivative
function for the system.

As it turns out, in BioCro, the derivative function never depends on 𝑡 directly; if there is any temporal
dependence in function f, it is always via some driver variable or differential variable. (Recall that 𝑡 represents
the elapsed time in a BioCro system; although some calculations may depend on the time of year or the time
of day, they do not depend on the elapsed time.) Therefore, we can rewrite equation (4.7) as

ẋ = f(x, k, d, w). (4.15)

Thus, f ∶ X × K × D × W → X. From here on out, we shall adopt BioCro’s notion of state space and denote
it as S, so that

S = X × K × D × W.
f is then a function f ∶ S → X, and the state equation, which we shall now refer to as the derivative equation,
is just

ẋ = f(s), (4.16)
where s denotes a state in the state space S.

In general, we can write any state s in terms of the coordinate variables describing each of the component
spaces; that is,

s = (𝑥0, 𝑥1, … , 𝑥𝑛−1, 𝑘0, 𝑘1, … , 𝑘𝑞−1, 𝑑0, 𝑑1, … , 𝑑𝑟−1, 𝑤0, 𝑤1, … , 𝑤𝑠−1)
where 𝑛, 𝑞, 𝑟, and 𝑠 are the dimensions of the component spaces X, K, D, and W, respectively.

Before we talk about decomposing the derivative function of a system, we will first describe what we
mean by a valid differential module for a BioCro system.

Let 𝑋 = {𝑥0, 𝑥1, … , 𝑥𝑛−1} be the set of differential variables of the system, and let

𝑆 = {𝑥0, 𝑥1, … , 𝑥𝑛−1, 𝑘0, 𝑘1, … , 𝑘𝑞−1, 𝑑0, 𝑑1, … , 𝑑𝑟−1, 𝑤0, 𝑤1, … , 𝑤𝑠−1}

be the set of all the coordinate variables needed to specify a state in the state space of the system. Then ℳ
is a valid differential module for the system if the input variables are contained in 𝑆 and the output variables
are contained in 𝑋.

Let Min be the vector subspace of S generated by the input variables of ℳ and let Mout be the vector
subspace of X generated by the output variables of ℳ. Then the derivative function for ℳ is some function

̂fM ∶ Min → Mout.

20

To each such function, we may associate a unique function fM ∶ S → X as follows:

Let 𝜋𝜋𝜋 be the projection of S onto Min, and let 𝜄𝜄𝜄 be the injective function of Mout into X that assigns
each coordinate in 𝑋 that is not an output variable of ℳ the value zero. Then we define

fM = 𝜄𝜄𝜄 ∘ ̂fM ∘ 𝜋𝜋𝜋 ∶ S
𝜋𝜋𝜋→ Min

̂fM⟶ Mout
𝜄𝜄𝜄→ X.

We shall call the function fM the system-complete derivative function for ℳ.

Now suppose we have a collection {ℳ1, ℳ2, … , ℳ𝑚} of differential modules assumed to be consistent
with (the rest of) our system, and let {fM1

, fM1
, … , fMm

} be their corresponding system-complete derivative
functions. Then the combined derivative function for {ℳ1, ℳ2, … , ℳ𝑚} is the function

f = ∑
𝑖∈{1,2,…,𝑚}

fMi
,

defined by the rule

s ↦ ∑
𝑖∈{1,2,…,𝑚}

fMi
(s).

If {ℳ1, ℳ2, … , ℳ𝑚} comprise the differential modules for a system, then f is that system’s derivative
function.

In other words, the outputs from each individual differential module are treated as terms that must be
added together to form the full derivative. For each module, the system-complete derivative function as
defined above calculates the values of some elements of 𝑋, setting the rest to 0. Then, the output from each
system-complete derivative function can be added together to form the full derivative. This is the operation
performed by the combined derivative function.

We could always write a single differential module ℳ that has f as its system-complete derivative function
and then use it in place of the collection of modules {ℳ1, ℳ2, … , ℳ𝑚} in any system that uses them. But
this module will likely combine several mechanistic bio-systems concepts, and one of the strengths of BioCro
is the ability to tweak one mechanistic model without having to rewrite multiple modules that might use it.

4.5.2 Decomposing the direct module function

Let 𝒮 be a BioCro system, and let S = X × K × D × W be the state space of 𝒮. As mentioned in Section
4.2, the direct module component of a BioCro system 𝒮 corresponds to a function

𝛾W ∶ X × K × D → W (4.17)

that determines the value of the “direct variable” component of a state from the value of the other compo-
nents. For convenience in what follows, we shall write H to abbreviate the cross product X × K × D. Thus
we may write (4.17) as

𝛾W ∶ H → W.

In general, however, the direct module component of a system will be subdivided into two or more
submodules. In this section, we will show that the ordered sum of two modules (a notion defined below) is
itself a module; this is the key to understanding how to modularize the direct module function.

As mentioned in Section 4.2, when a system has more than one direct module, each constituent module
ℳ𝑖 corresponds to a function

𝛾W𝑖 ∶ X × K × D × W𝑖 → W𝑖, (4.18)
or, using the abbreviation used above,

𝛾W𝑖 ∶ H × W𝑖 → W𝑖. (4.19)

21

Letting 𝐻 denote the set of variables corresponding to H and denoting the input and output variables
of module ℳ𝑖 as In ℳ𝑖 and Out ℳ𝑖 respectively, we can write

W𝑖 = ROut ℳ𝑖

and

W𝑖 = RIn ℳ𝑖 −𝐻 ,

where In ℳ𝑖 and Out ℳ𝑖 are disjoint, since direct modules never share inputs and outputs.14 Note that it
may be the case that In ℳ𝑖 ⊆ 𝐻; in this case W𝑖 is 0-dimensional and 4.19 reduces to

𝛾W𝑖 ∶ H → W𝑖.

𝐻 corresponds to the union of all the differential variables, parameters, and driver variables of the system.
Usually, it will be the case that any given direct module in a system will not use all of the variables in 𝐻: not
all of the variables in 𝐻 will affect the value of the output, nor will they even be listed in the list returned
by the module’s get_inputs() function. But they are all always potentially available for use by any direct
module, and in what follows, it will be convenient to assume that the direct module inputs include all the
variables of 𝐻; that is, In ℳ𝑖 ⊇ 𝐻, for all direct modules ℳ𝑖. This way, the only thing that changes about
the domain of the module function between various direct modules is the W𝑖 component of H × W𝑖. This
will simplify the exposition of what follows.

(To take a simple example of formal dependence versus actual dependence, consider a two-variable func-
tion 𝑓(𝑥, 𝑦) defined by the rule (𝑥, 𝑦) ↦ 𝑥2. Formally, this is a function of two variables 𝑥 and 𝑦. But the
value of the function never actually depends on the value of 𝑦.)

The ordered sum of two direct modules Suppose that ℳ𝑖 and ℳ𝑗 are two direct modules having
disjoint sets of output variables (that is, Out ℳ𝑖 ∩ Out ℳ𝑗 = ∅), and suppose also that none of the outputs
of ℳ𝑗 are inputs for ℳ𝑖; that is, In ℳ𝑖 ∩ Out ℳ𝑗 = ∅. Let 𝑓 and 𝑔 be their corresponding functions. For
convenience, we put

𝐴 = In ℳ𝑖
𝐵 = Out ℳ𝑖
𝐶 = In ℳ𝑗

and

𝐷 = Out ℳ𝑗,

so that

𝑓 ∶ R𝐴 → R𝐵

and

𝑔 ∶ R𝐶 → R𝐷,

with 𝐴 ∩ 𝐵 = 𝐶 ∩ 𝐷 = 𝐴 ∩ 𝐷 = 𝐵 ∩ 𝐷 = ∅.
14When we say that direct modules never share inputs and outputs, we are specifically referring to direct modules used in

the construction of a dynamical system, that is, direct modules that are members of the set of direct modules mentioned at
the outset in our discussion of the BioCro model. But there do, in fact, exist modules, also going by the name direct module,
that do have one or more input and output variables in common. We won’t consider such modules here, and it what follows,
we always consider only direct modules of the former type, where the input and output sets are disjoint.

22

At this point, it is possible to see how we might combine these two direct modules to come up with
something that is itself a module; the key is to think in terms of module inputs and outputs: Given mappings
for all values in 𝐴 and all values in 𝐶 that aren’t in 𝐵, we can obtain mappings for all values in 𝐵 and 𝐷 as
follows: Since we know all the inputs 𝐴 to module ℳ𝑖, we can use the module to obtain all the outputs 𝐵.
Now we know all the inputs 𝐶 to module ℳ𝑗—both those that aren’t in 𝐵 (which were given at the outset),
and those that are in 𝐵 (which were obtained by applying module ℳ𝑖). This yields all the outputs 𝐷 of
module ℳ𝑗. We can also describe this more formally, as we now proceed to do.

We define ℳ𝑖 + ℳ𝑗, the ordered sum of ℳ𝑖 and ℳ𝑗, to be the direct module whose corresponding
function

𝑓 ∗ 𝑔 ∶ R𝐴∪(𝐶 −𝐵) → R𝐵∪𝐷 (4.20)

is defined by

𝑓 ∗ 𝑔 = (𝑓 ∘ 𝜋𝐴∪(𝐶 −𝐵)→𝐴) ∪ (𝑔 ∘ (𝜋𝐴∪(𝐶 −𝐵)→𝐶 −𝐵 ∪ (𝜋𝐵→𝐶∩𝐵 ∘ 𝑓 ∘ 𝜋𝐴∪(𝐶 −𝐵)→𝐴))). (4.21)

(Note that if 𝐵 ∩ 𝐶 = ∅, then 𝐶 −𝐵 = 𝐶, and 4.21 reduces to

𝑓 ∗ 𝑔 = (𝑓 ∘ 𝜋𝐴∪𝐶→𝐴) ∪ (𝑔 ∘ 𝜋𝐴∪𝐶→𝐶). (4.22)

In this case, the ordering is immaterial, and ℳ𝑗 + ℳ𝑖 = ℳ𝑖 + ℳ𝑗, with 𝑔 ∗ 𝑓 = 𝑓 ∗ 𝑔.)

Recalling that the inputs and outputs of a direct module function must be disjoint, we can check that
this is indeed the case for the sum. First we note that whenever we can take the ordered sum of two modules
ℳ𝑖 and ℳ𝑗,

In(ℳ𝑖 + ℳ𝑗) = In ℳ𝑖 ∪ (In 𝑀𝑗 −Out ℳ𝑖) (4.23)

and

Out(ℳ𝑖 + ℳ𝑗) = Out ℳ𝑖 ∪ Out ℳ𝑗. (4.24)

(The fact that the set of inputs for the ordered sum is In ℳ𝑖 ∪ (In 𝑀𝑗 −Out ℳ𝑖) is readily apparent from
4.20: the domain of 𝑓 ∗ 𝑔 being R𝐴∪(𝐶 −𝐵) corresponds to the inputs for the corresponding module being
𝐴 ∪ (𝐶 −𝐵), which is just In ℳ𝑖 ∪ (In 𝑀𝑗 −Out ℳ𝑖). Similarly for the outputs.)

Using this, we then have that

In(ℳ𝑖 + ℳ𝑗) ∩ Out(ℳ𝑖 + ℳ𝑗) = (In ℳ𝑖 ∪ (In 𝑀𝑗 −Out ℳ𝑖)) ∩ (Out ℳ𝑖 ∪ Out ℳ𝑗) by 4.23 and 4.24
= (In ℳ𝑖 ∩ Out ℳ𝑖)

∪ (In ℳ𝑖 ∩ Out ℳ𝑗)
∪ ((In 𝑀𝑗 −Out ℳ𝑖) ∩ Out ℳ𝑖)
∪ ((In 𝑀𝑗 −Out ℳ𝑖) ∩ Out ℳ𝑗) by distributivity of ∩ over ∪

= ∅ ∪ ∅ ∪ ∅ ∪ ∅
= ∅

That each of the intersections in the distributive expansion is empty is easily verified: In ℳ𝑖 ∩ Out ℳ𝑖 and
(In 𝑀𝑗 −Out ℳ𝑖) ∩ Out ℳ𝑗) are both empty as a consequence of direct modules having non-overlapping
inputs and outputs. (In 𝑀𝑗 −Out ℳ𝑖) ∩ Out ℳ𝑖 must be empty since a member of In 𝑀𝐽 that is not in
Out ℳ𝑖 can’t also be in Out ℳ𝑖. Finally, In ℳ𝑖 ∩ Out ℳ𝑗 = ∅ was a stipulation made when defining the
ordered sum of ℳ𝑖 and ℳ𝑗.

Equation 4.21 perhaps requires a little explication in order to be comprehended.

Suppose we are given some value x in R𝐴∪(𝐶 −𝐵), the domain of 𝑓 ∗ 𝑔. We can describe (𝑓 ∗ 𝑔)(x) ∈ R𝐵∪𝐷

by describing the way to compute how (𝑓 ∗ 𝑔)(x) maps each 𝑦 ∈ 𝐵 ∪ 𝐷 into R.

23

First suppose 𝑦 ∈ 𝐵. Then we need only look at the first component in the union on the right-hand side
of 4.21—namely, 𝑓 ∘ 𝜋𝐴∪(𝐶 −𝐵)→𝐴. The projection 𝜋𝐴∪(𝐶 −𝐵)→𝐴(x) = x|𝐴 of x to R𝐴 tells us that we need
consider only the coordinates of x that correspond to members of 𝐴. Once we have a vector in R𝐴, we can
apply the function 𝑓 to obtain a value in R𝐵. This is all we need, since 𝑦 is in 𝐵.

Now suppose 𝑦 ∈ 𝐷. Here we need to look at the somewhat more complicated second component of the
right-hand side of 4.21, that is, 𝑔 ∘ (𝜋𝐴∪(𝐶 −𝐵)→𝐶 −𝐵 ∪ (𝜋𝐵→𝐶∩𝐵 ∘ 𝑓 ∘ 𝜋𝐴∪(𝐶 −𝐵)→𝐴)). Since 𝑔 ∶ R𝐶 → R𝐷, we
need to feed 𝑔 some value in R𝐶 to obtain a mapping to R of values (such as 𝑦) in 𝐷. But x is in R𝐴∪(𝐶 −𝐵),
so x only tells how values in 𝐶 that aren’t also in 𝐵 are mapped. The mapping for these values corresponds
to the projection 𝜋𝐴∪(𝐶 −𝐵)→𝐶 −𝐵(x) = x|(𝐶 −𝐵), a value in R𝐶 −𝐵. To find the portion of the mapping we
need that belongs to R𝐶∩𝐵, we look at 𝜋𝐵→𝐶∩𝐵 ∘ 𝑓 ∘𝜋𝐴∪(𝐶 −𝐵)→𝐴. As we have just seen, 𝑓 ∘𝜋𝐴∪(𝐶 −𝐵)→𝐴 maps
x to a member of R𝐵. Then we can apply the projection 𝜋𝐵→𝐶∩𝐵 to obtain a member of R𝐶∩𝐵. Taking the
union of the components in R𝐶 −𝐵 and R𝐶∩𝐵 gives us a value in R𝐶 , to which we can apply function 𝑔. The
result is a function in R𝐷 telling how all values (such as 𝑦) in 𝐷 are mapped.

General ordered sum We now generalize the notion of an ordered sum of two direct modules to the
ordered sum of any finite number of direct modules.

Suppose we have an ordered collection (ℳ1, ℳ2, … , ℳ𝑛) of direct modules. As is the case with all direct
modules, In ℳ𝑖 ∩ Out ℳ𝑖 = ∅ for all 𝑖. Further, assume that Out ℳ𝑖 ∪ Out ℳ𝑗 = ∅ for all 𝑖 ≠ 𝑗, and that
In ℳ𝑖 ∩ Out ℳ𝑗 = ∅ whenever 𝑖 < 𝑗. Then we define the ordered sum ∑𝑛

𝑖=1 ℳ𝑖 recursively as follows:

𝑘
∑
𝑖=1

ℳ𝑖 = 𝑀1 for 𝑘 = 1

𝑘
∑
𝑖=1

ℳ𝑖 =
𝑘−1
∑
𝑖=1

ℳ𝑖 + ℳ𝑘 for 1 < 𝑘 ≤ 𝑛 (4.25)

Things are not quite as simple as this, however, since we must show that the ordered sum given on the
right-hand side of 4.25 is always defined. Specifically, we must show that

Out
𝑘−1
∑
𝑖=1

ℳ𝑖 ∩ Out ℳ𝑘 = ∅ (4.26)

and

In
𝑘−1
∑
𝑖=1

ℳ𝑖 ∩ Out ℳ𝑘 = ∅. (4.27)

But it easily follows by induction from equation 4.24 that

Out
𝑘−1
∑
𝑖=1

ℳ𝑖 =
𝑘−1
⋃
𝑖=1

Out ℳ𝑖,

and 4.26 easily follows from this, the distributivity of ∩ over ∪, and the assumption that the outputs of the
modules are pairwise disjoint.

To prove 4.27, we first observe that it follows immediately from 4.23 that In(ℳ𝑖 +ℳ𝑗) ⊆ In ℳ𝑖 ∪In 𝑀𝑗,
and from this it is easy to show by induction that

In
𝑘−1
∑
𝑖=1

ℳ𝑖 ⊆
𝑘−1
⋃
𝑖=1

In ℳ𝑖. (4.28)

Since a stipulation in defining the ordered sum of modules was that output of each module in the ordered col-
lection is disjoint from the inputs of each module occuring earlier in the ordering, in light of the distributivity
of ∩ over ∪, the desired result 4.27 immediately follows.

24

Appendix: Degenerate BioCro systems

This appendix is meant to demonstrate certain edge cases and “off-label” uses of BioCro systems. All of
these systems are set up using the R interface. A similar set of systems that use the C++ library directly
could be written in C++.

A minimal system

This system contains the absolute minimum number of quantities. Since it has only a single time point,
timestep is present only to satisfy a formal requirement of the validity checker; it is otherwise meaningless.

A formal requirement of the R interface (but not of the C++ interface) is that the set of driver variables
either contains time or contains both doy and hour. All three variables show up in the output.

library(BioCro)
run_biocro(parameters = list(timestep=1), drivers = data.frame(time=45.625))

doy hour ncalls time
1 45 15 1 45.625

run_biocro(parameters = list(timestep=1), drivers = data.frame(doy=80, hour=14.25))

doy hour ncalls time
1 80 14.25 1 80.59375

Note that ncalls always shows up in the output data frame, even though it is constant and even though
it is not a system variable.

Note also that if time is a driver, it dominates: doy and hour (if present) are overwritten. If time is not
present, both doy and hour must be; if only one is, we get obscure error:

Error in floor(result$time) :
non-numeric argument to mathematical function

A system having a differential variable but no differential module

As noted in Section 4.2, it is the initial_values parameter that determines which variables are differential
variables. Usually, each differential variable will be an output of one or more differential modules, but this
is not required. Differential variables that are not in the output of any differential module are assumed to
have a derivative of zero; that is, they are constant. This system exhibits such a case.

run_biocro(initial_values = list(x = 52),
parameters = list(timestep=1),
drivers = data.frame(time=0:4))

doy hour ncalls time x
1 0 0 5 0 52
2 1 0 5 1 52
3 2 0 5 2 52
4 3 0 5 3 52
5 4 0 5 4 52

25

An off-label use of run_biocro

Here is an example of what might be called an “off-label” use of a BioCro system. This system really
doesn’t deserve to be called a dynamical system at all. Although the drivers parameter contains five rows of
temporal and spacial data (each row specifies a time and a place), the rows have no inherent relationship to
one another: they do not represent any sort of evolution of a system over time. The times specified by the
rows aren’t even in chronological order: although the timestep variable is supposed to indicate the temporal
relationship between successive rows of the drivers parameter value, this is a convention only, and it is not
enforced.

Nevertheless, this system is useful: it uses the BioCro:solar_position_michalsky module to compute
the cosine of the zenith angle of the sun at noon in various terrestrial locations on various days of the year.
We could have gotten the same information using five calls to run_biocro with drivers having a single row,
but doing it in one call is more convenient.

result <- run_biocro(parameters = list(timestep=1),
drivers = data.frame(doy = c(355, 172, 80, 80, 80),

hour = 12,
time_zone_offset = -6,
year = 2022,
lat = c(40, 40, 40, 0, 89),
longitude = -88),

direct_module_names = 'BioCro:solar_position_michalsky')
result[c('lat', 'longitude', 'doy', 'hour', 'cosine_zenith_angle')]

lat longitude doy hour cosine_zenith_angle
1 40 -88 355 12 0.44655908
2 40 -88 172 12 0.95824629
3 40 -88 80 12 0.77093280
4 0 -88 80 12 0.99996308
5 89 -88 80 12 0.02509952

A system having only drivers (and the obligatory timestep parameter)

Like the minimal system shown in the first example, this system has no differential variables and no modules.
But the drivers include some driver variables that aren’t time related. Like all systems not having any
modules, it doesn’t really do anything.

result <- run_biocro(parameters = list(timestep=1),
drivers = weather$`2005`[1000:1010,])

result[c('year', 'doy', 'hour', 'precip', 'rh', 'solar', 'temp', 'windspeed')]

year doy hour precip rh solar temp windspeed
1 2000 42 15 0.0106 0.74 756 4.530 7.48
2 2000 42 16 0.0106 0.70 421 5.080 7.45
3 2000 42 17 0.0106 0.73 102 4.370 5.94
4 2000 42 18 0.0106 0.80 1 2.460 4.78
5 2000 42 19 0.0106 0.83 0 1.650 4.12
6 2000 42 20 0.0106 0.84 0 1.210 3.57
7 2000 42 21 0.0106 0.87 0 0.635 3.26
8 2000 42 22 0.0106 0.86 0 0.550 3.76
9 2000 42 23 0.0106 0.85 0 0.890 4.82
10 2000 43 0 0.0000 0.82 0 1.250 4.96
11 2000 43 1 0.0000 0.83 0 1.030 5.67

26

The weather information this run displays could just as easily be displayed using

weather$`2005`[1000:1010,
c('year', 'doy', 'hour', 'precip', 'rh', 'solar', 'temp', 'windspeed')]

References

Barreira, Luís. 2019. Dynamical Systems by Example. 1st ed. 2019. Problem Books in Mathematics. Cham:
Springer International Publishing.

Dale, Andrew I. 1995. Philosophical Essay on Probabilities / Pierre-Simon Laplace. 1st ed. 1995. Sources
in the History of Mathematics and Physical Sciences; 13. New York: Springer.

Deutsch, Andreas. 2005. Cellular Automaton Modeling of Biological Pattern Formation: Characterization,
Applications, and Analysis. Modeling and Simulation in Science, Engineering and Technology. Boston:
Birkhäuser.

Giunti, Marco. 1997. Computation, Dynamics, and Cognition. Oxford University Press.
Giunti, Marco, and Claudio Mazzola. 2012. “Dynamical Systems on Monoids: Toward a General Theory of

Deterministic Systems and Motion.” In Methods, Models, Simulations & Approaches Towards A General
Theory of Change - Proceedings of the Fifth National Conference of the Italian Systems Society, 173–85.
https://www.researchgate.net/publication/272943599_Dynamical_Systems_on_Monoids_Toward_
a_General_Theory_of_Deterministic_Systems_and_Motion.

Khalil, Hassan K. 2002. Nonlinear Systems. 3rd ed. Upper Saddle River, N.J: Prentice Hall.
Lochocki, Edward B., Scott Rohde, Deepak Jaiswal, Megan L. Matthews, Fernando Miguez, Stephen P. Long,

and Justin M. McGrath. 2022. “BioCro II: A Software Package for Modular Crop Growth Simulations.”
In Silico Plants 4 (1). https://doi.org/10.1093/insilicoplants/diac003.

Mesarović, Mihajlo D., and Yasuhiko Takahara. 1975. General Systems Theory: Mathematical Foundations.
Mathematics in Science and Engineering, v. 113. New York: Academic Press.

Vaught, Robert L. 1985. Set Theory: An Introduction. Boston: Birkhäuser.

27

https://www.researchgate.net/publication/272943599_Dynamical_Systems_on_Monoids_Toward_a_General_Theory_of_Deterministic_Systems_and_Motion
https://www.researchgate.net/publication/272943599_Dynamical_Systems_on_Monoids_Toward_a_General_Theory_of_Deterministic_Systems_and_Motion
https://doi.org/10.1093/insilicoplants/diac003

	Dynamical systems, real and mathematical
	An example: the falling-body problem
	Some comments on mathematical abstraction

	Continuous time versus discrete time
	Euler's method
	Applying Euler's method to the falling-body problem
	Note about abstraction and recursive systems

	An overview of some abstract dynamical system formulations
	Some notational preliminaries
	The Khalil model
	Variants of Khalil's model

	The Giunti-Mazzola model
	The Barreira-Valls model

	The BioCro model
	Elaboration on the Khalil model
	BioCro viewed in terms of the Khalil model
	BioCro's concept of time
	BioCro's concept of state
	BioCro state and the Khalil model
	BioCro state and the Giunti model
	The state space as a manifold

	Modularization in BioCro
	Modularization of the derivative function
	Decomposing the direct module function

	Appendix: Degenerate BioCro systems
	A minimal system
	A system having a differential variable but no differential module
	An off-label use of run_biocro
	A system having only drivers (and the obligatory timestep parameter)

	References

