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1 Overview

This vignette is a guided walkthrough of the code used to produce the �gures in Section 3 of Lochocki et al.
(2022) [doi: 10.1093/insilicoplants/diac003] Brie�y, this section of the paper compares two di�erent models
for C3 photosynthesis: the mechanistic Farquhar-von-Cammerer-Berry (FvCB) model and an empirical
radiation use e�ciency (RUE) model. Each of these models is available as a BioCro module and can be
used as a component in a larger crop model. The FvCB version in particular plays a key role in BioCro's
validated soybean model, and it can be considered as the more accurate model for C3 photosynthesis. On
the other hand, the RUE model has several known shortcomings, such as being insensitive to atmospheric
[CO2] levels. The main idea of Section 3 is to compare the behavior of these two models, both on their own
and in the context of a larger soybean growth simulation. The analysis proceeds in the following steps:

1. Find a value of the radiation use e�ciency alpha_rue that optimizes the agreement between total
biomass predicted for soybeans in 2002 using the RUE and FvCB models.
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2. Compare the sensitivity of each model to several di�erent environmental variables.

3. Determine the level of disagreement between the two models when simulating soybean growth in other
years. (The analysis here includes more years than were included in the original paper.)

For more information about this analysis, including the motivation for each step and a discussion of the
results, please see the BioCro II paper. Also note that as time progresses and the BioCro models are
improved, the �gures produced in this vignette may slightly diverge from those of the BioCro II paper.

The general strategies employed here can be applied to other modules in order to quantitatively compare
the behavior of alternate versions of a model component, or even just to illustrate the behavior of a model.
This type of analysis is indispensible for understanding and explaining the properties of models, and it is
hoped that this vignette can serve as a template for other analyses in the future.

2 Retrieving weather data and creating �gures

For brevity, this R vignette does not display the code used for processing weather data, retrieving weather
data, or creating �gures, although this code is contained in the associated R script. This is to place emphasis
on the BioCro functionality related to analyzing modules, since this part of the code will be of more general
use. For other analyses, the required weather data will likely be di�erent, and each user may have their own
preferences regarding plotting that di�er from the strategies used here.

In this section, we provide a short overview of the hidden code that is required to complete the analysis
and produce the �gures, but isn't explicitly included in this vignette.

This code creates two named lists to help with retrieving processed weather data:

� catm: A list of the atmospheric [CO2] levels for 1980 - 2023. Essentially, this list contains globally av-
eraged annual atmospheric [CO2] levels from catm_data, a dataset obtained from NOAA and included
as part of the BioCro package.

� soy_weather: A list of weather data where each named element corresponds to the growing season of
one particular year. Essentially, this list contains growing seasons of weather data from Champaign,
Illinois that are appropriate to use for the soybean simulations in this analysis. Full years of weather
data are included in the BioCro package as the weather dataset. To create soy_weather, photoperiod
length as determined from the soybean circadian clock model is added to the original weather data,
and then the full yearly set is truncated to days 152�288.

Most plots in this vignette are created using the xyplot function from the lattice package, and PDF
versions of the plots are saved using another helping function: pdf_print. To produce the �gures used in
the paper, these raw �gures were �nalized using Adobe Illustrator to modify colors, combine panels, format
text, and perform other operations designed to improve readability.

3 Determining the optimal value for alpha_rue in 2002

We want to �nd the value of alpha_rue that creates output most similar to the FvCB model. To do this, we
will use an optimizer to �nd the value of alpha_rue that minimizes the squared di�erence in end-of-season
total mass between the two models for one year. Our example problem can be considered a simple case of
least-squares �tting, where the number of model parameters being considered is one.

The �rst step is to run the FvCB soybean model for the year 2002. Afterwards, we can extract the
�nal biomass for 2002 as predicted by the FvCB model. Since we will be extracting the �nal biomass from
the results of multiple simulations during this analysis, we will create a reusable function for doing this.
Note that we also de�ne a soybean model specialized for this analysis that includes an additional module
(BioCro:total_biomass) that is not part of the standard soybean model; as its name suggests, this module
simply calculates the total biomass by adding the separate tissues together, and including it in the model
simpli�es some of the later calculations.
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cmi_soybean <- within(soybean, {

direct_modules = append(direct_modules, 'BioCro:total_biomass')

})

fvcb_result_2002 <- with(cmi_soybean, {run_biocro(

initial_values,

parameters,

soy_weather[['2002']],

direct_modules,

differential_modules,

ode_solver

)})

final_biomass <- function(df) {

df[nrow(df), 'total_biomass']

}

final_biomass_fvcb_2002 <- final_biomass(fvcb_result_2002)

During the optimization, we will need to run the RUE soybean model many times with di�erent values of
alpha_rue, keeping the values of all other parameters and drivers constant. In this situation, the technique
of partial application can be very useful; partial application refers to a process where some arguments to a
function are �xed, creating a function with fewer arguments. In BioCro, a convenience function for using
partial application with run_biocro is provided: the partial_run_biocro function. Here we use it to �x
all inputs to run_biocro except alpha_rue. Note that we also replace the default canopy photosynthesis
module. The return value from partial_run_biocro is a function that we have called rue_2002; this
function takes a value of alpha_rue as an input, runs a simulation using that value and the other arguments
speci�ed in the original call to partial_run_biocro, and returns the resulting data frame.

# The first six arguments are the same as for `run_biocro`

rue_2002 <- with(cmi_soybean, {partial_run_biocro(

initial_values,

within(parameters, {alpha_rue = NA}),

soy_weather[['2002']],

within(direct_modules, {canopy_photosynthesis = 'BioCro:ten_layer_rue_canopy'}),

differential_modules,

ode_solver,

'alpha_rue' # here we specify the names of any quantities whose values

)}) # should not be fixed

The optimizer we will use requires a function that accepts one argument (the value of the parameter
being optimized) and returns one value (the value to minimize). Here, we create a function that accepts a
value of alpha_rue, passes it to rue_2002 to run a soybean simulation, extracts the end-of-season biomass,
and calculates the squared di�erence between that result and the FvCB result. This function provides a
means for associating an error metric with each value of alpha_rue, and it is suitable for passing to the
optimizer.

rue_fvcb_square_difference = function(alpha_rue) {

(final_biomass(rue_2002(alpha_rue)) - final_biomass_fvcb_2002)^2

}

Here we use the optim function, which is included with every R installation; it accepts f(x) and �nds
the value of x that minimizes f(x). It requires a starting value for x, and for the Brent method, upper and
lower bounds of x. It returns a list with information about the optimization (including the parameters it
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found, which are included in the par list element). Here we pass the rue_fvcb_square_difference function
to optim in order to �nd the best value for alpha_rue.

min_alpha <- 0.021

max_alpha <- 0.031

opt_par = optim(

0.03,

rue_fvcb_square_difference,

method='Brent',

lower=min_alpha,

upper=max_alpha

)

best_alpha_rue = opt_par$par

The optimal alpha_rue value can be compared to the square di�erence curve to ensure that a minimum
was truly obtained (Figure 1; this is Figure S1 in the BioCro II paper).

Here we used partial_run_biocro to specify one parameter for optimization (alpha_rue), used the
output from partial_run_biocro to de�ne a function that associates a measure of error with a value of
alpha_rue (rue_fvcb_square_difference), and passed that function to an optimizer (optim).

This is a general strategy for parameter optimization in BioCro, allowing the user to choose which
parameters should be optimized, de�ne an error metric, and choose an optimization algorithm. In this
example the error function is simply based on end-of-season biomass, but more detailed error metrics that
compare the simulation output to experimentally measured data can easily be created. For the optimization,
we use the optim function, but this design allows any optimizer available in R to be used. For example, one
could easily adapt this to search for parameters using simulated annealing or evolutionary algorithms. This
is in contrast to some dynamical system software programs, in particular GUI-driven programs, which o�er
a limited and nonextendable number of choices for these algorithms.

Year 2002: best_alpha_rue = 0.0260368527341457
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Figure 1: Squared end-of-season biomass di�erence plotted against alpha_rue (blue line); the di�erence at
the optimal value of alpha_rue is shown as a red circle.
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4 Comparing soybean biomass in 2002

Having found a value of alpha_rue that minimizes the end-of-year biomass di�erence between the two
models, we can now run the RUE model with this optimized value and check to see how well the models
agree at other points during the growing season (Figure 2; this is Figure 4a in the BioCro II paper).

optimal_rue_result_2002 <- with(cmi_soybean, {run_biocro(

initial_values,

within(parameters, {alpha_rue = best_alpha_rue}),

soy_weather[['2002']],

within(direct_modules, {canopy_photosynthesis = 'BioCro:ten_layer_rue_canopy'}),

differential_modules,

ode_solver

)})
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Figure 2: Soybean root, grain, leaf, and stem biomass calculated during 2002 using the RUE and FvCB
photosynthesis models

5 Comparing assimilation values in 2002

Additional insight into the agreement between the models can be gained by examining the relationship
between gross CO2 assimilation rates (Ag) and incident light intensity (Q) at the leaf level throughout the
entire growing season. The BioCro multilayer canopy photosynthesis modules store these values for each
layer (0-9) and leaf class (sunlit and shaded) in quantities with names that specify layer number as a su�x
and class as a pre�x added to the base names of incident_ppfd (Q) and GrossAssim (Ag), for example
sunlit_incident_ppfd_layer_0 and shaded_GrossAssim_layer_9. To help with plotting, it is bene�cial
to �rst extract all the (Q, Ag) pairs from each layer and leaf class in the output of a BioCro simulation; here
we make a helping function to accomplish this.
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extract_aq_scatter <- function(biocro_output) {

light_column_names <- grep(

'(sunlit|shaded)_incident_ppfd_layer_[0-9]',

names(biocro_output),

value = TRUE

)

assim_column_names <- grep(

'(sunlit|shaded)_GrossAssim_layer_[0-9]',

names(biocro_output),

value=TRUE

)

aq_scatter <- data.frame(

incident_ppfd = unlist(biocro_output[light_column_names]),

gross_assimilation = unlist(biocro_output[assim_column_names]),

row.names = NULL

)

return(aq_scatter)

}

Now it is possible to produce scatter plots of (Q, Ag) values for each model during 2002 (Figures 3 and
4; these two �gures are combined to form Figure 4b in the BioCro II paper). Note: because the canopy
model uses ten layers and two leaf classes, there are twenty (Q, Ag) pairs per time point; because the crop's
state is stored at hourly intervals over a growing season that lasts for 137 days, there are 3,288 time points,
yielding 65,760 (Q, Ag) pairs in total for each simulation. Plotting all of these points results in very large
�les, so, to reduce the size of the vignette PDF, here we only plot a subset of the points.

(Ag, Q) scatter plot from the FvCB model in 2002
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Figure 3: Ag versus Q for soybean leaves in each canopy layer (0-9) and class (sunlit or shaded) as calculated
during 2002 using the FvCB photosynthesis model.
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(Ag, Q) scatter plot from the RUE model in 2002
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Figure 4: Ag versus Q for soybean leaves in each canopy layer (0-9) and class (sunlit or shaded) as calculated
during 2002 using the RUE photosynthesis model.

6 FvCB light response curve sensitivity analysis

Here we calculate the sensitivity of the FvCB model to various inputs known to in�uence the photosynthetic
rate. To do this, we will use the BioCro:c3_leaf_photosynthesis module to produce light curves. This
module requires incident PPFD and absorbed shortwave energy as inputs, so we create a series of each.

# Choose a set of incident PPFD values to use (micromol / m^2 / s)

incident_ppfd <- seq(0, 1000, length.out = 501)

# Determine corresponding absorbed PPFD values (micromol / m^2 / s) using the

# soybean leaf reflectance and transmittance

absorbed_ppfd <- incident_ppfd *

(1 - cmi_soybean$parameters$leaf_reflectance -

cmi_soybean$parameters$leaf_transmittance)

# Determine corresponding incident PAR values (J / m^2 / s) using the average

# energy per micromole of photosynthetically active photons in sunlight

incident_par <- incident_ppfd * cmi_soybean$parameters$par_energy_content

# Determine the corresponding incident shorwave values using the fraction of

# solar energy that lies in the PAR band (J / m^2 / s)

incident_shortwave <- incident_par / cmi_soybean$parameters$par_energy_fraction

# Determine the corresponding absorbed shortwave energy values using the

# shortwave reflectance and transmittance of the leaf (J / m^2 / s)

average_absorbed_shortwave <-

incident_shortwave *

(1 - cmi_soybean$parameters$leaf_reflectance -

cmi_soybean$parameters$leaf_transmittance) /
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(1 - cmi_soybean$parameters$leaf_transmittance)

# Make a data frame with the incident PPFD and absorbed shortwave values, where

# we also include values of a few other required parameters

light_curve_inputs <- data.frame(

incident_ppfd = incident_ppfd,

absorbed_ppfd = absorbed_ppfd,

average_absorbed_shortwave = average_absorbed_shortwave,

rh = 0.75,

temp = 25,

windspeed = 3.28,

Catm = catm[['2002']],

StomataWS = 0.99,

height = 0.75

)

Now we need to create a function that calculates assimilation sensitivity coe�cients for one independent
variable using the light_curve_inputs. Here we numerically calculate a value for the derivative df/dx of
a function f(x) at x0 according to

df

dx
=

f(x0 + δ)− f(x0 − δ)

2δ
, (1)

where δ is a small perturbation away from the central value x0. Then the normalized sensitivity coe�cient
is given by

c =
df/dx

f(x0)/x0
(2)

In this function, the evaluate_module BioCro function is used to calculate the gross assimilation rate
for di�erent values of the independent variable speci�ed by varname; in other words, varname is x and the
BioCro:c3_leaf_photosynthesis module de�nes f(x).

assim_sensitivity <- function(

varname,

base_inputs,

relative_perturbation = 1e-6

)

{

module <- 'BioCro:c3_leaf_photosynthesis'

var_center <- base_inputs[[varname]]

gross_assim_center <- evaluate_module(module, base_inputs)$GrossAssim

neg_inputs <- base_inputs

neg_var <- base_inputs[[varname]] * (1 - relative_perturbation)

neg_inputs[[varname]] <- neg_var

gross_assim_neg <- evaluate_module(module, neg_inputs)$GrossAssim

pos_inputs <- base_inputs

pos_var <- base_inputs[[varname]] * (1 + relative_perturbation)

pos_inputs[[varname]] <- pos_var

gross_assim_pos <- evaluate_module(module, pos_inputs)$GrossAssim

dadx = (gross_assim_pos - gross_assim_neg) / (pos_var - neg_var)

return(dadx / (gross_assim_center / var_center))

}
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Now we can use this function to calculate sensitivity coe�cients for atmospheric [CO2], relative humidity,
air temperature, water stress, and wind speed (Figure 5; this is Figure 5a in the BioCro II paper).

fvcb_light_curve_sensitivity_variables <-

c('Catm', 'rh', 'temp', 'StomataWS', 'windspeed')

fvcb_sensitivity_light_curve_result <- data.frame(

incident_ppfd = light_curve_inputs[['incident_ppfd']]

)

# For each variable of interest, calculate sensitivity at each of the light

# intensities in `light_curve_inputs`

for (varname in fvcb_light_curve_sensitivity_variables) {

fvcb_sensitivity_light_curve_result[[varname]] <-

apply(

light_curve_inputs,

1,

function(x) {assim_sensitivity(

varname,

c(within(cmi_soybean$parameters, {rm(Catm)}), as.list(x))

)}

)

}
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Figure 5: Normalized sensitivity coe��cients characterizing the response of Ag to several inputs in the
FvCB photosynthesis model.

7 Biomass sensitivity analysis

Here we wish to use the two photosynthesis models in a full crop model and compare the sensitivities of
the total biomass to various inputs. The approach is slightly di�erent depending on whether the input is a
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driver or a parameter.

7.1 Sensitivity to a driver: air temperature

Several routes are possible when analyzing the sensitivity of a model's output to a driver. Here we choose the
instantaneous biomass as the dependent variable, and we perturb the driver at all time points. For example,
in the case of air temperature, we perturb the air temperature at every time point, run the simulation, and
calculate the resulting change in biomass at every time point.

First we will de�ne a function that calculates biomass sensitivity coe�cients for one independent driver
value using weather data from 2002. Here the independent variable is speci�ed by the varname input. To
make the perturbation required to numerically calculate a derivative, the value of the driver is increased or
decreased at every time point.

Special care must be taken when varname is temp, since the air temperature drops below zero near the
end of the year, causing strange behavior in the sensitivity analysis. To avoid this, we convert from ◦C to
K, then perform the perturbation, and �nally convert back to ◦C to run the simulation.

biomass_driver_sensitivity <- function(

varname,

sens_parameters,

canopy_photosynthesis_module,

relative_perturbation = 1e-5

)

{

c_to_k <- 273.15

default_drivers <- within(soy_weather[['2002']], {temp = temp + c_to_k})

default_result <- with(cmi_soybean, {run_biocro(

initial_values,

sens_parameters,

within(default_drivers, {temp = temp - c_to_k}),

within(direct_modules, {canopy_photosynthesis = canopy_photosynthesis_module}),

differential_modules,

ode_solver

)})

neg_drivers <- default_drivers

neg_drivers[[varname]] <- default_drivers[[varname]] * (1 - relative_perturbation)

neg_result <- with(cmi_soybean, {run_biocro(

initial_values,

sens_parameters,

within(neg_drivers, {temp = temp - c_to_k}),

within(direct_modules, {canopy_photosynthesis = canopy_photosynthesis_module}),

differential_modules,

ode_solver

)})

pos_drivers <- default_drivers

pos_drivers[[varname]] <- default_drivers[[varname]] * (1 + relative_perturbation)

pos_result <- with(cmi_soybean, {run_biocro(

initial_values,

sens_parameters,

within(pos_drivers, {temp = temp - c_to_k}),

within(direct_modules, {canopy_photosynthesis = canopy_photosynthesis_module}),
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differential_modules,

ode_solver

)})

dMdx <-

(pos_result[['total_biomass']] - neg_result[['total_biomass']]) /

(pos_drivers[[varname]] - neg_drivers[[varname]])

normalized_sensitivity <-

dMdx / (default_result[['total_biomass']] / default_drivers[[varname]])

return(

data.frame(

normalized_sensitivity = normalized_sensitivity,

time = default_result[['time']]

)

)

}

With this function, we can calculate normalized sensitivity coe�cients for biomass in response to air
temperature with both the FvCB and RUE models (Figure 6; this is Figure 5b in the BioCro II paper).

biomass_temp_sensitivity_fvcb <- biomass_driver_sensitivity(

'temp',

cmi_soybean$parameters,

'BioCro:ten_layer_c3_canopy'

)

biomass_temp_sensitivity_rue <- biomass_driver_sensitivity(

'temp',

within(cmi_soybean$parameters, {alpha_rue = best_alpha_rue}),

'BioCro:ten_layer_rue_canopy'

)

7.2 Sensitivity to a parameter: atmospheric [CO2]

Here we will de�ne a function that calculates biomass sensitivity coe�cients for one independent parameter
value using weather data from 2002. Here the independent variable is speci�ed by the varname input. Note:
This function will produce errors for any varname whose base value is zero.

biomass_parameter_sensitivity <- function(

varname,

sens_parameters,

canopy_photosynthesis_module,

relative_perturbation = 1e-6

)

{

default_result <- with(cmi_soybean, {run_biocro(

initial_values,

sens_parameters,

soy_weather[['2002']],

within(direct_modules, {canopy_photosynthesis = canopy_photosynthesis_module}),

differential_modules,
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Figure 6: Normalized sensitivity coe��cients characterizing the response of the total biomass M to air
temperature when using either the FvCB or RUE photosynthesis model.

ode_solver

)})

neg_parameters <- sens_parameters

neg_parameters[[varname]] <- sens_parameters[[varname]] * (1 - relative_perturbation)

neg_result <- with(cmi_soybean, {run_biocro(

initial_values,

neg_parameters,

soy_weather[['2002']],

within(direct_modules, {canopy_photosynthesis = canopy_photosynthesis_module}),

differential_modules,

ode_solver

)})

pos_parameters <- sens_parameters

pos_parameters[[varname]] <- sens_parameters[[varname]] * (1 + relative_perturbation)

pos_result <- with(cmi_soybean, {run_biocro(

initial_values,

pos_parameters,

soy_weather[['2002']],

within(direct_modules, {canopy_photosynthesis = canopy_photosynthesis_module}),

differential_modules,

ode_solver

)})

dMdx <-

(pos_result[['total_biomass']] - neg_result[['total_biomass']]) /

(pos_parameters[[varname]] - neg_parameters[[varname]])
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normalized_sensitivity <-

dMdx / (default_result[['total_biomass']] / sens_parameters[[varname]])

return(

data.frame(

normalized_sensitivity = normalized_sensitivity,

time = default_result[['time']]

)

)

}

With this function, we can calculate normalized sensitivity coe�cients for biomass in response to atmo-
spheric [CO2] with both the FvCB and RUE models (Figure 7; this is Figure 5c in the BioCro II paper).

biomass_catm_sensitivity_fvcb <- biomass_parameter_sensitivity(

'Catm',

cmi_soybean$parameters,

'BioCro:ten_layer_c3_canopy'

)

biomass_catm_sensitivity_rue <- biomass_parameter_sensitivity(

'Catm',

within(cmi_soybean$parameters, {alpha_rue = best_alpha_rue}),

'BioCro:ten_layer_rue_canopy'

)
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Figure 7: Normalized sensitivity coe��cients characterizing the response of the total biomass M to atmo-
spheric [CO2] when using either the FvCB or RUE photosynthesis model.
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8 Comparing FvCB and RUE photosynthesis models in the year

2006

A simple way to demonstrate that the two photosynthesis models have di�erent responses to changes in
environmental variables is to plot biomass values in a di�erent year, such as 2006. To do this, we will
�rst run the FvCB soybean model for the year 2006, ensuring that we're using the correct value for the
atmospheric [CO2]. Then we will run the RUE model for 2006, using the value of alpha_rue that was
optimized for 2002. A comparison shows a divergence in the predicted mass values (Figure 8; this is Figure
6c in the BioCro II paper).

fvcb_result_2006 <- with(cmi_soybean, {run_biocro(

initial_values,

within(parameters, {Catm = catm[['2006']]}),

soy_weather[['2006']],

direct_modules,

differential_modules,

ode_solver

)})

# Run the RUE model with the optimal value for alpha_rue determined for 2002

rue_result_2006 <- with(cmi_soybean, {run_biocro(

initial_values,

within(parameters, {alpha_rue = best_alpha_rue; Catm = catm[['2006']]}),

soy_weather[['2006']],

within(direct_modules, {canopy_photosynthesis = 'BioCro:ten_layer_rue_canopy'}),

differential_modules,

ode_solver

)})
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Figure 8: Soybean root, grain, leaf, and stem biomass values calculated during 2006 using either the FvCB
or RUE photosynthesis model.
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9 Comparing RUE and FvCB models across multiple years

Here we wish to examine the results of the two models over a range of years. In particular, atmospheric
[CO2] has steadily increased over the past several decades, so do the two models diverge with time? To
answer this question, we run the soybean model with either the FvCB or RUE photosynthesis equations for
multiple years and compare the end-of-season biomass (Figure 9; this is Figure 6b from the BioCro II paper);
from this result, a clear trend in the biomass di�erence with atmospheric [CO2] can be observed (Figure 10;
this is Figure 6c from the BioCro II paper).

# Decide which years to use

years <- as.character(seq(1995, 2023))

# Initialize vectors to store final biomass and atmospheric CO2 values

final_biomass_seq_rue <- numeric(length(years))

final_biomass_seq_fvcb <- numeric(length(years))

catm_seq <- numeric(length(years))

# Get final biomass values for each year in each model

for (i in seq_along(years)) {

# Run the RUE soybean model for this year, ensuring that we're using the

# correct value for the atmospheric CO2 concentration

rue_result <- with(cmi_soybean, {run_biocro(

initial_values,

within(parameters, {alpha_rue = best_alpha_rue; Catm = catm[[years[i]]]}),

soy_weather[[years[i]]],

within(direct_modules, {canopy_photosynthesis = 'BioCro:ten_layer_rue_canopy'}),

differential_modules,

ode_solver

)})

# Run the FvCB soybean model for this year, ensuring that we're using the

# correct value for the atmospheric CO2 concentration

fvcb_result <- with(cmi_soybean, {run_biocro(

initial_values,

within(parameters, {Catm = catm[[years[i]]]}),

soy_weather[[years[i]]],

direct_modules,

differential_modules,

ode_solver

)})

# Store the final biomass and atmospheric CO2 values

final_biomass_seq_rue[i] <- final_biomass(rue_result)

final_biomass_seq_fvcb[i] <- final_biomass(fvcb_result)

catm_seq[i] <- catm[[years[i]]]

}
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Figure 9: End-of-season soybean biomass values calculated for Champaign, IL using either the FvCB or
RUE photosynthesis equations for each year from 1995 - 2023.
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Figure 10: End-of-season biomass di�erences between the FvCB and RUE soybean models expressed as
percentages for each year from 1995 - 2023, plotted against yearly average [CO2] levels.
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